The problem of pattern selection in absolutely unstable open flow systems is investigated by considering the example of Rayleigh-B\'{e}nard convection. The spatiotemporal structure of convection rolls propagating downstream in an externally imposed flow is determined for six different inlet/outlet boundary conditions. Results are obtained by numerical simulations of the Navier-Stokes equations and by comparison with the corresponding Ginzburg-Landau amplitude equation. A unique selection process is observed being a function of the control parameters and the boundary conditions but independent of the history and the system length. The problem can be formulated in terms of a nonlinear eigen/boundary value problem where the frequency of the propagating pattern is the eigenvalue. PACS: 47.54.+r, 47.20.Bp, 47.27.Te, 47.20.KyComment: 8 pages, 5 Postscript figures, Physica D 97, 253-263 (1996
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.