Aim The invasion process is a complex, context‐dependent phenomenon; nevertheless, it can be described using the PAB framework. This framework encompasses the joint effect of propagule pressure (P), abiotic characteristics of the environment (A), and biotic characteristics of both the invader and recipient vegetation (B). We analyzed the effectiveness of proxies of PAB factors to explain the spatial pattern of Solidago canadensis and S. gigantea invasion using invasive species distribution models. Location Carpathian Mountains and their foreground, Central Europe. Methods The data on species presence or absence were from an atlas of neophyte distribution based on a 2 × 2 km grid, covering approximately 31,200 km2 (7,752 grid cells). Proxies of PAB factors, along with data on historical distribution of invaders, were used as explanatory variables in Boosted Regression Trees models to explain the distribution of invasive Solidago. The areas with potentially lower sampling effort were excluded from analysis based on a target species approach. Results Proxies of the PAB factors helped to explain the distribution of both S. canadensis and S. gigantea. Distributions of both species were limited climatically because a mountain climate is not conducive to their growth; however, the S. canadensis distribution pattern was correlated with proxies of human pressure, whereas S. gigantea distribution was connected with environmental characteristics. The varied responses of species with regard to distance from their historical distribution sites indicated differences in their invasion drivers. Main conclusions Proxies of PAB are helpful in the choice of explanatory variables as well as the ecological interpretation of species distribution models. The results underline that human activity can cause variation in the invasion of ecologically similar species.
Species-rich grasslands formed by local ecotypes of native species provide numerous ecosystem services both in rural areas as well as urban grasslands. Nonetheless, their area is still too small, making grasslands one of the most frequently restored habitats. Successful restoration requires high-quality seed material, which is expensive and often not easy to acquire. In this study, we tested the potential of seeds accidentally collected during the mowing of a semi-natural grassland for grassland restoration. We tested seed purity, species composition, and germination capability in both laboratory and field conditions. Ninety percent of the collected material consisted of pure seeds of numerous species. Their germination capability was relatively low but still sufficient for successful grassland restoration under a typical seed density/mass per unit area seeding ratio. The germination capacity was the highest in the first two weeks after sowing and increased with overwintering seed storage. The results suggested that the seeds could be successfully used for species-rich grassland restoration. In terms of advantages, the seed mixture had a low cost and contained native species seeds representing local ecotypes. In terms of disadvantages, there was a relatively low amount of seed material and an inability to plan the time of seed harvesting. Thus, the use of the accidentally collected seeds can be considered an effective but rather ad hoc solution.
Allelopathy is an important factor influencing whether an invasive plant species can become successfully established in a new range through disrupting the germination and growth of native plant species. Goldenrods (Solidago species) are one of the most widespread invasive taxa in Central Europe of North American origin. Owing to their high environmental impact and wide distribution range, invasive Solidago species should be controlled in Europe, and the areas invaded by them should be restored. Numerous studies have reported the allelopathic effects of Solidago gigantea and Solidago canadensis, but the results are inconsistent regarding differences in the allelopathic effects of particular plant parts and in the sensitivity to Solidago allelopathic effects among native species as well as between the two invasive species themselves. In this study, we aimed to analyse the effect of water extracts from S. canadensis and S. gigantea parts (roots, rhizomes, stems, leaves, and inflorescences) on the germination and initial growth of seedlings of 13 grassland species that typically grow in Central Europe. The tested grassland species differed in susceptibility to Solidago allelopathy, with the most resistant species being Schedonorus pratensis, Lolium perenne, Trifolium pratense, Daucus carota and Leucanthemum vulgare. The inhibitory effect of 10% water extracts from leaves and flowers were stronger than those from rhizomes, roots, and stems without leaves, regardless of the Solidago species. Our study results imply that reducing the allelopathic effect of Solidago during habitat restoration requires removal of the aboveground parts, including fallen leaves. The allelopathic effects of roots and rhizomes seem to be of secondary importance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.