After many years of fusion research, the conditions needed for a D–T fusion reactor have been approached on the Tokamak Fusion Test Reactor (TFTR) [Fusion Technol. 21, 1324 (1992)]. For the first time the unique phenomena present in a D–T plasma are now being studied in a laboratory plasma. The first magnetic fusion experiments to study plasmas using nearly equal concentrations of deuterium and tritium have been carried out on TFTR. At present the maximum fusion power of 10.7 MW, using 39.5 MW of neutral-beam heating, in a supershot discharge and 6.7 MW in a high-βp discharge following a current rampdown. The fusion power density in a core of the plasma is ≊2.8 MW m−3, exceeding that expected in the International Thermonuclear Experimental Reactor (ITER) [Plasma Physics and Controlled Nuclear Fusion Research (International Atomic Energy Agency, Vienna, 1991), Vol. 3, p. 239] at 1500 MW total fusion power. The energy confinement time, τE, is observed to increase in D–T, relative to D plasmas, by 20% and the ni(0) Ti(0) τE product by 55%. The improvement in thermal confinement is caused primarily by a decrease in ion heat conductivity in both supershot and limiter-H-mode discharges. Extensive lithium pellet injection increased the confinement time to 0.27 s and enabled higher current operation in both supershot and high-βp discharges. Ion cyclotron range of frequencies (ICRF) heating of a D–T plasma, using the second harmonic of tritium, has been demonstrated. First measurements of the confined alpha particles have been performed and found to be in good agreement with TRANSP [Nucl. Fusion 34, 1247 (1994)] simulations. Initial measurements of the alpha ash profile have been compared with simulations using particle transport coefficients from He gas puffing experiments. The loss of alpha particles to a detector at the bottom of the vessel is well described by the first-orbit loss mechanism. No loss due to alpha-particle-driven instabilities has yet been observed. D–T experiments on TFTR will continue to explore the assumptions of the ITER design and to examine some of the physics issues associated with an advanced tokamak reactor.
Order of magnitude improvements in the level and curation of current driven by lower hybrid waves have been chieved in the PLT tokamak. Steady currents up to 175 kA have been maintained for three seconds and 400 kA for 0.3 sec by the rf power alone. The principal current carrier appears to be a high energy (-100 keV) electron component, concentrated in the central 20-40 cm diameter core of the 80 cm PLT discharge. DISimtOTI OF THIS DOCUMENT is mump .\JLA
The time scales for sawtooth repetition and heat pulse propagation are much longer (10's of msec) in the large tokamak TFTR than in previous, smaller tokamaks. This extended time scale coupled with more detailed diagnostics has led us to revisit the analysis of the heat pulse propagation as a method to determine the electron heat diffusivity, x e) in the plasma. A combination of analytic and computer solutions of the electron heat diffusion equation are used to clarify previous work and develop new methods for determining x e-Direct comparison of the predicted heat pulses with soft X-ray and ECE data indicates that the space-time evolution is diffusive. However, the x e determined from heat pulse propagation usually exceeds that determined from background plasma power balance considerations by a factor ranging from 2 to 10, Some hypotheses for resolving this discrepancy are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.