The structure of mitogen-activated protein (MAP) kinase p38 has been solved at 2.1-Å to an R factor of 21.0%, making p38 the second low activity MAP kinase solved to date. Although p38 is topologically similar to the MAP kinase ERK2, the phosphorylation Lip (a regulatory loop near the active site) adopts a different fold in p38. The peptide substrate binding site and the ATP binding site are also different from those of ERK2. The results explain why MAP kinases are specific for different activating enzymes, substrates, and inhibitors. A model presented for substrate and activator interactions has implications for the evolution of protein kinase cascades.
Among the protein kinases, an absolutely conserved lysine in subdomain II is required for high catalytic activity. This lysine is known to interact with the substrate ATP, but otherwise its role is not well understood. We have used biochemical and structural methods to investigate the function of this lysine (K52) in phosphoryl transfer reactions catalyzed by the MAP kinase ERK2. The kinetic properties of activated wild-type ERK2 and K52 mutants were examined using the oncoprotein TAL2, myelin basic protein, and a designed synthetic peptide as substrates. The catalytic activities of K52R and K52A ERK2 were lower than that of wild-type ERK2, primarily as a consequence of reductions in kcat. Further, there was little difference in Km for ATP, but the Km,app for peptide substrate was higher for the K52 mutants. The three-dimensional structure of unphosphorylated K52R ERK2 in the absence and presence of bound ATP was determined and compared with the structure of unphosphorylated wild-type ERK2. ATP adopted a well-defined but distinct binding mode in K52R ERK2 compared to the binding mode in the wild-type enzyme. The structural and kinetic data show that mutation of K52 created a nonproductive binding mode for ATP and suggest that K52 is essential for orienting ATP for catalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.