A vaccine providing both powerful Ab and cross-reactive T cell immune responses against influenza viruses would be beneficial for both humans and pigs. In this study, we evaluated i.m., aerosol (Aer), and simultaneous systemic and respiratory immunization (SIM) by both routes in Babraham pigs, using the single cycle candidate influenza vaccine S-FLU. After prime and boost immunization, pigs were challenged with H1N1pdm09 virus. i.m.-immunized pigs generated a high titer of neutralizing Abs but poor T cell responses, whereas Aer induced powerful respiratory tract T cell responses but a low titer of Abs. SIM pigs combined high Ab titers and strong local T cell responses. SIM showed the most complete suppression of virus shedding and the greatest improvement in pathology. We conclude that SIM regimes for immunization against respiratory pathogens warrant further study.
mAbs are a possible adjunct to vaccination and drugs in treatment of influenza virus infection. However, questions remain whether small animal models accurately predict efficacy in humans. We have established the pig, a large natural host animal for influenza, with many physiological similarities to humans, as a robust model for testing mAbs. We show that a strongly neutralizing mAb (2-12C) against the hemagglutinin head administered prophylactically at 15 mg/kg reduced viral load and lung pathology after pandemic H1N1 influenza challenge. A lower dose of 1 mg/kg of 2-12C or a DNA plasmid-encoded version of 2-12C reduced pathology and viral load in the lungs but not viral shedding in nasal swabs. We propose that the pig influenza model will be useful for testing candidate mAbs and emerging delivery platforms prior to human trials.
Recent evidence indicates that local immune responses and tissue resident memory T cells (T RM) are critical for protection against respiratory infections but there is little information on the contributions of upper and lower respiratory tract (URT and LRT) immunity. To provide a rational basis for designing methods for optimal delivery of vaccines to the respiratory tract in a large animal model, we investigated the distribution of droplets generated by a mucosal atomization device (MAD) and two vibrating mesh nebulizers (VMNs) and the immune responses induced by delivery of influenza virus by MAD in pigs. We showed that droplets containing the drug albuterol, a radiolabel (99m Tc-DTPA), or a model influenza virus vaccine (S-FLU) have similar aerosol characteristics. 99m Tc-DTPA scintigraphy showed that VMNs deliver droplets with uniform distribution throughout the lungs as well as the URT. Surprisingly MAD administration (1ml/nostril) also delivered a high proportion of the dose to the lungs, albeit concentrated in a small area. After MAD administration of influenza virus, antigen specific T cells were found at high frequency in nasal turbinates, trachea, broncho-alveolar lavage, lungs, tracheobronchial nodes, and blood. Anti-influenza antibodies were detected in serum, BAL and nasal swabs. We conclude that the pig is useful for investigating optimal targeting of vaccines to the respiratory tract.
Summary Background Blood transcriptomic signatures for diagnosis of tuberculosis have shown promise in case-control studies, but none have been prospectively designed or validated in adults presenting with the full clinical spectrum of suspected tuberculosis, including extrapulmonary tuberculosis and common differential diagnoses that clinically resemble tuberculosis. We aimed to evaluate the diagnostic accuracy of transcriptomic signatures in patients presenting with clinically suspected tuberculosis in routine practice. Methods The Validation of New Technologies for Diagnostic Evaluation of Tuberculosis (VANTDET) study was nested within a prospective, multicentre cohort study in secondary care in England (IDEA 11/H0722/8). Patients (aged ≥16 years) suspected of having tuberculosis in the routine clinical inpatient and outpatient setting were recruited at ten National Health Service hospitals in England for IDEA and were included in VANTDET if they provided consent for genomic analysis. Patients had whole blood taken for microarray analysis to measure abundance of transcripts and were followed up for 6–12 months to determine final diagnoses on the basis of predefined diagnostic criteria. The diagnostic accuracy of six signatures derived from the cohort and three previously published transcriptomic signatures with potentially high diagnostic performance were assessed by calculating area under the receiver-operating characteristic curves (AUC-ROCs), sensitivities, and specificities. Findings Between Nov 25, 2011, and Dec 31, 2013, 1162 participants were enrolled. 628 participants (aged ≥16 years) were included in the analysis, of whom 212 (34%) had culture-confirmed tuberculosis, 89 (14%) had highly probable tuberculosis, and 327 (52%) had tuberculosis excluded. The novel signature with highest performance for identifying all active tuberculosis gave an AUC-ROC of 0·87 (95% CI 0·81–0·92), sensitivity of 77% (66–87), and specificity of 84% (74–91). The best-performing published signature gave an AUC-ROC of 0·83 (0·80–0·86), sensitivity of 78% (73–83), and specificity of 76% (70–80). For detecting highly probable tuberculosis, the best novel signature yielded results of 0·86 (0·71–0·95), 77% (56–94%), and 77% (57–95%). None of the relevant cohort-derived or previously published signatures achieved the WHO-defined targets of paired sensitivity and specificity for a non-sputum-based diagnostic test. Interpretation In a clinically representative cohort in routine practice in a low-incidence setting, transcriptomic signatures did not have adequate accuracy for diagnosis of tuberculosis, including in patients with highly probable tuberculosis where the unmet need is greatest. These findings suggest that transcriptomic signatures have little clinical utility for diagnostic assessment of suspected tuberculosis. Funding National Institute for Health Research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.