An active surface science model for the Phillips ethylene polymerization catalyst has been prepared by impregnating aqueous CrO3 on a flat silicium(100) substrate covered by amorphous silica. Using a combination of X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and Rutherford backscattering spectrometry, we studied the effect of calcination on the state of the supported chromium. Depending on the calcination temperature and the initial Cr loading of the catalyst, two processes are observed. The impregnated chromate anchors to the silica surface in an esterification reaction with the surface silanol groups of the support. The saturation coverage of these surface chromates is 2.4 Cr/nm2 for a calcination temperature of 450 °C. Superficial, not anchored, chromate slowly desorbs from the flat silica surface. Under crowded conditions a portion of the surface chromates also desorb if the calcination temperature is increased, while low Cr loadings (>1 Cr/nm2) are stable up to the highest calcination temperature in our experiments (730 °C). The silica-bound surface chromates are monochromates exclusivly, independent of the initial loading or calcination temperature.
The effect of water on iron-based nanoparticles under hydrogen and syngas was investigated by in situ X-ray absorption spectroscopy. The iron oxide (γ-Fe2O3) nanoparticles, dispersed as a monolayer on flat silica surfaces, were readily converted into metallic iron in dry hydrogen at 350 °C and into iron carbide in dry syngas (H2/CO 2/1 vol/vol) at 325 °C. However, in the presence of water, the reduction did not proceed beyond magnetite (Fe3O4) up to 350 °C. Wustite (Fe(II)O or FeO(1–x)) was formed at 450 °C in wet syngas and 550 °C in wet hydrogen. Once formed, the iron carbide nanoparticles proved remarkably stable against oxidation in wet syngas at 350 °C. However, we observed the formation of a surface iron(II) oxide phase that increases with increasing H2O/CO ratio. This implies that the active surface of iron-based Fischer–Tropsch catalysts is covered by considerable amounts of adsorbed oxygen during the Fischer–Tropsch reaction. Reducing the temperature by only 20 K results in complete and irreversible oxidation to magnetite. We propose that the surface iron(II) oxide plays an important role during Fischer–Tropsch synthesis by regulating the relative rates of CO hydrogenation versus water gas shift and by stabilizing the iron carbide catalyst against irreversible deactivation by oxidation to magnetite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.