To function as a DNA-RNA helicase in rho-dependent transcript termination, six genetically identical subunits of the Escherichia coli transcription termination protein rho must first assemble into a hexameric complex. To help determine the quaternary structure of this complex, we have studied the association equilibria of the rho protomers. Sedimentation equilibrium, sedimentation velocity, diffusion, X-ray scattering, and neutron-scattering data have been combined to create a "phase diagram" of the association states of this protein as a function of protein concentration and ionic environment. The results show that rho exists predominantly as a hexamer under approximately physiological conditions and that this hexamer is in equilibrium with both lower and higher states of association that may also have physiological relevance. Small-angle X-ray scattering measurements and theoretical calculations indicate that the rho hexamer has a radius of gyration of 50 +/- 3 A. The radius of gyration measured by small-angle neutron scattering in 2H2O is 47 +/- 3 A. These scattering studies also support earlier models of rho as a planar hexagon which have been developed on the basis of electron microscopy. In the following paper in this issue [Geiselmann, J., Seifried, S. E., Yager, T. D., Liang, C., & von Hippel, P. H. (1992)], these results are combined with information on symmetry, subunit interactions, and packing geometry to obtain a model of the quaternary structure of the functional rho hexamer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.