Patients with thyroid cancers refractory to radioiodine (RAI) treatment show a limited response to various therapeutic options and a low survival rate. The recent use of multikinase inhibitors has also met limited success. An alternative approach relies on drugs that induce cell differentiation, as the ensuing increased expression of the cotransporter for sodium and iodine (NIS) may partially restore sensitivity to radioiodine. The inhibition of the ERK1/2 pathway has shown some efficacy in this context. Aggressive thyroid tumors overexpress the isoform-A of the insulin receptor (IR-A) and its ligand IGF-2; this IGF-2/IR-A loop is associated with de-differentiation and stem-like phenotype, resembling RAI-refractory tumors. Importantly, IR-A has been shown to be positively modulated by the non-integrin collagen receptor DDR1 in human breast cancer. Using undifferentiated human thyroid cancer cells, we now evaluated the effects of DDR1 on IGF-2/IR-A loop and on markers of cell differentiation and stemness. DDR1 silencing or downregulation caused significant reduction of IR-A and IGF-2 expression, and concomitant increased levels of differentiation markers (NIS, Tg, TSH, TPO). Conversely, markers of epithelial-to-mesenchymal transition (Vimentin, Snail-2, Zeb1, Zeb2 and N-Cadherin) and stemness (OCT-4, SOX-2, ABCG2 and Nanog) decreased. These effects were collagen independent. In contrast, overexpression of either DDR1 or its kinase-inactive variant K618A DDR1-induced changes suggestive of less differentiated and stem-like phenotype. Collagen stimulation was uneffective. In conclusion, in poorly differentiated thyroid cancer, DDR1 silencing or downregulation blocks the IGF-2/IR-A autocrine loop and induces cellular differentiation. These results may open novel therapeutic approaches for thyroid cancer.
The antihypertensive flavonol quercetin (Q1) is endowed with a cardioprotective effect against myocardial ischemic damage. Q1 inhibits angiotensin converting enzyme activity, improves vascular relaxation, and decreases oxidative stress and gene expression. However, the clinical application of this flavonol is limited by its poor bioavailability and low stability in aqueous medium. In the aim to overcome these drawbacks and preserve the cardioprotective effects of quercetin, the present study reports on the preparation of five different Q1 analogs, in which all OH groups were replaced by hydrophobic functional moieties. Q1 derivatives have been synthesized by optimizing previously reported procedures and analyzed by spectroscopic analysis. The cardiovascular properties of the obtained compounds were also investigated in order to evaluate whether chemical modification affects their biological efficacy. The interaction with β-adrenergic receptors was evaluated by molecular docking and the cardiovascular efficacy was investigated on the ex vivo Langendorff perfused rat heart. Furthermore, the bioavailability and the antihypertensive properties of the most active derivative were evaluated by in vitro studies and in vivo administration (1month) on spontaneously hypertensive rats (SHRs), respectively. Among all studied Q1 derivatives, only the ethyl derivative reduced left ventricular pressure (at 10(-8)M÷10(-6)M doses) and improved relaxation and coronary dilation. NOSs inhibition by L-NAME abolished inotropism, lusitropism and coronary effects. Chronic administration of high doses of this compound on SHR reduced systolic and diastolic pressure. Differently, the acetyl derivative induced negative inotropism and lusitropism (at 10(-10)M and 10(-8)÷10(-6)M doses), without affecting coronary pressure. Accordingly, docking studies suggested that these compounds bind both β1/β2-adrenergic receptors. Taking into consideration all the obtained results, the replacement of OH with ethyl groups seems to improve Q1 bioavailability and stability; therefore, the ethyl derivative could represent a good candidate for clinical use in hypertension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.