An apparatus, capable of measuring the dc resistance versus temperature of a 49-member library prepared by thin-film deposition techniques was designed and tested. The library is deposited by dc magnetron sputtering onto 10.16 cmϫ 10.16 cm alumina substrates on which are placed aluminum masks consisting of 8 mm diam holes cut on a 7 ϫ 7 grid, the center-to-center spacing being 10.15 mm. Electrical contact to the library is made in a standard van der Pauw geometry using 196 spring-loaded, gold-coated pins, four pins for each member of the library. The temperature is controlled using a helium refrigerator in combination with a liquid-nitrogen radiation shield that greatly reduces radiative heating of the sample stage. With the radiation shield, the cold finger is able to sustain a minimum temperature of 7 K and the sample stage a minimum temperature of 27 K. The temperature ͑27-291 K͒ dependent dc resistivity of a thin-film silver library of varying thickness ͑48-639 nm͒ is presented to highlight the capabilities of the apparatus. The thickness dependence of both the resistivity and the temperature coefficient of resistivity are quantitatively consistent with the literature. For thicknesses greater than about 100 nm, the room-temperature resistivity ͑3.4 ⍀ cm͒ are consistent with Matthiessen's rule for 1%-2% impurity content, and the temperature coefficient of resistivity is consistent with the bulk value. For thicknesses less than 100 nm, an increase in resistivity by a factor of 8 is found, which may be due to surface and boundary scattering effects; a corresponding increase in the temperature coefficient of resistivity is consistent with a concomitant decrease in the magnitude of the elastic constants and surface scattering effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.