Increase in adipose mass results in obesity and modulation of several factors in white adipose tissue (WAT). Two important examples are tumor necrosis factor alpha (TNFalpha) and leptin, both of which are upregulated in adipose tissue in obesity. In order to isolate genes differentially expressed in the WAT of genetically obese db/db mice compared to their lean littermates, we performed RNA fingerprinting and identified haptoglobin (Hp), which is significantly upregulated in the obese animals. Hp is a glycoprotein induced by a number of cytokines, LPS (Lipopolysaccharide), and more generally by inflammation. A significant upregulation of WAT Hp expression was also evident in several experimental obese models including the yellow agouti (/) A(y), ob/ob and goldthioglucose-treated mice (10-, 8-, and 7-fold, respectively). To identify the potential signals for an increase in Hp expression in obesity, we examined leptin and TNFalpha in vivo. Wild type animals treated with recombinant leptin did not show any alteration in WAT Hp expression compared to controls that were food restricted to the level of intake of the treated animals. On the other hand, Hp expression was induced in mice transgenically expressing TNFalpha in adipose tissue. Finally, a significant downregulation of WAT Hp mRNA was observed in ob/ob mice deficient in TNFalpha function, when compared to the ob/ob controls. These results demonstrate that haptoglobin expression in WAT is increased in obesity in rodents and TNFalpha is an important signal for this regulation.
Abstract:A 3 adenosine receptors have been proposed to play an important role in the pathophysiology of cerebral ischemia with a regimen-dependent nature of the therapeutic effects probably related to receptor desensitization and down-regulation. Here we studied the agonist-induced internalization of human A 3 adenosine receptors in transfected Chinese hamster ovary cells, and then we evaluated the relationship between internalization and signal desensitization and resensitization. Binding of N 6 -(4-amino-3-[ 125 I]iodobenzyl)adenosine-5Ј-Nmethyluronamide to membranes from Chinese hamster ovary cells stably transfected with the human A 3 adenosine receptor showed a profile typical of these receptors in other cell lines (K D ϭ 1.3 Ϯ 0.08 nM; B max ϭ 400 Ϯ 28 fmol/mg of proteins). The iodinated agonist, bound at 4°C to whole transfected cells, was internalized by increasing the temperature to 37°C with a rate constant of 0.04 Ϯ 0.034 min Ϫ1 . Agonist-induced internalization of A 3 adenosine receptors was directly demonstrated by immunogold electron microscopy, which revealed the localization of these receptors in plasma membranes and intracellular vesicles. Moreover, short-term exposure of these cells to the agonist caused rapid desensitization as tested in adenylyl cyclase assays. Subsequent removal of the agonist led to restoration of the receptor function and recycling of the receptors to the cell surface. The rate constant of receptor recycling was 0.02 Ϯ 0.0017 min Ϫ1 .
A B S T R A C Tson with normals (172 +14); these differences reflected the different basal plasma insulin concentrations in these three groups. Chronic treatment with oral hypoglycemic drugs, age, duration of the disease, and degree of metabolic control appeared to have only little effect on the kinetics of insulin. On the basis of these results, we conclude that insulin-independent adult diabetics show, already in the fasting state, a combination of insulin resistance and insulin deficiency and a derangement in insulin distribution, the precise significance of which is uncertain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.