Hallucinogens, including mescaline, psilocybin, and lysergic acid diethylamide (LSD), profoundly affect perception, cognition, and mood. All known drugs of this class are 5-HT(2A) receptor (2AR) agonists, yet closely related 2AR agonists such as lisuride lack comparable psychoactive properties. Why only certain 2AR agonists are hallucinogens and which neural circuits mediate their effects are poorly understood. By genetically expressing 2AR only in cortex, we show that 2AR-regulated pathways on cortical neurons are sufficient to mediate the signaling pattern and behavioral response to hallucinogens. Hallucinogenic and nonhallucinogenic 2AR agonists both regulate signaling in the same 2AR-expressing cortical neurons. However, the signaling and behavioral responses to the hallucinogens are distinct. While lisuride and LSD both act at 2AR expressed by cortex neurons to regulate phospholipase C, LSD responses also involve pertussis toxin-sensitive heterotrimeric G(i/o) proteins and Src. These studies identify the long-elusive neural and signaling mechanisms responsible for the unique effects of hallucinogens.
The psychosis associated with schizophrenia is characterized by alterations in sensory processing and perception 1,2 . Some antipsychotic drugs were identified by their high affinity for serotonin 5-HT 2A receptors (2AR) 3,4 . Drugs that interact with metabotropic glutamate receptors (mGluR) also show potential for the treatment of schizophrenia [5][6][7] . The effects of hallucinogenic drugs, such as psilocybin and lysergic acid diethylamide (LSD), require the 2AR [8][9][10] and resemble some of the core symptoms of schizophrenia [10][11][12] . Here we show that the mGluR2 interacts via specific transmembrane helix domains with the 2AR, a member of an unrelated G protein-coupled receptor (GPCR) family, to form functional complexes in brain cortex. The 2AR/mGluR2 complex triggers unique cellular responses when targeted by hallucinogenic drugs, and activation of mGluR2 abolishes hallucinogen specific signalling and behavioural responses. In postmortem human brain from untreated schizophrenic subjects, the 2AR is up-regulated and the mGluR2 is down-regulated, a pattern that could predispose to psychosis. These regulatory changes suggest that the 2AR/mGluR2 complex may be involved in the altered cortical processes of schizophrenia, and represents a promising new target for the treatment of psychosis.Correspondence and requests for materials should be addressed to: J.G.M (e-mail: Javier.Maeso@mssm.edu) S.C.S. (e-mail: Stuart.Sealfon@mssm.edu). The 2AR and mGluR2/3 show an overlapping distribution in brain cortex in autoradiography studies 13 . The mGluR2 and mGluR3 are not distinguished by autoradiographic ligands. We used fluorescent in situ hybridization (FISH) to determine whether either of these receptor subtypes are co-expressed by the same neurons. In layer V mouse somatosensory cortex (SCx), 2AR mRNA positive cells were mostly mGluR2 mRNA positive. The level of expression in SCx was much lower for mGluR3 mRNA, which rarely co-localized with 2AR mRNA (Fig. 1a). Control studies validated assay sensitivity and specificity, and similar 2AR/mGluR2 mRNA co-localization was found in cortical primary cultures (Figs. 1a,b,c, and Supplementary Fig. S1). Translation of 2AR protein in cortical pyramidal neurons was found to be necessary for normal mGluR2 expression. Mice with globally disrupted 2AR expression (htr2A−/− mice) showed reduced cortical mGluR2 binding and expression, while mice in which 2AR expression was selectively restored in cortical pyramidal neurons 8,14 showed control expression levels (Supplementary Table S1, and Supplementary Fig. S2). The effects of mGluR2/3 activation on 2AR responses have been generally attributed to synaptic mechanisms 5,6,13,15 . However, the co-localization of 2AR and mGluR2 and the reduction of mGluR2 expression levels in htr2A−/− mice motivated us to examine whether a direct mechanism contributed to cortical crosstalk between these two receptor systems. NIH Public AccessRecent studies have demonstrated that some GPCRs belonging to the same sequence classes can form ...
The maintenance of long-term potentiation (LTP) requires a brief period of accelerated protein synthesis soon after synaptic stimulation, suggesting that an early phase of enhanced translation contributes to stable LTP. The mechanism regulating protein synthesis and the location and identities of mRNAs translated are not well understood. Here, we show in acute brain slices that the induction of protein synthesis-dependent hippocampal LTP increases the expression of elongation factor 1A (eEF1A), the mRNA of which contains a 5Ј terminal oligopyrimidine tract. This effect is blocked by rapamycin, indicating that the increase in EF1A expression is mediated by the mammalian target of rapamycin (mTOR) pathway. We find that mRNA for eEF1A is present in pyramidal cell dendrites and that the LTP-associated increase in eEF1A expression was intact in dendrites that had been severed from their cell bodies before stimulation. eEF1A levels increased within 5 min after stimulation in a translation-dependent manner, and this effect remained stable for 3 h. These results suggest a mechanism whereby synaptic stimulation, by signaling through the mTOR pathway, produces an increase in dendritic translational capacity that contributes to LTP maintenance.
The photostability and narrow emission spectra of non-organic quantum dot fluorophores (QDs) make them desirable candidates for fluorescent in situ hybridization (FISH) to study the expression of specific mRNA transcripts. We developed a novel method for direct QD labeling of modified oligonucleotide probes through streptavidin and biotin interactions, as well as protocols for their use in multiple-label FISH. We validated this technique in mouse brainstem sections. The subcellular localization of the vesicular monoamine transporter (Vmat2) mRNA corresponds when using probes labeled with two different QDs in the same hybridization. We developed protocols for combined direct QD FISH and QD immunohistochemical labeling within the same neurons as well as for simultaneous study of the subcellular distribution of multiple mRNA targets. We demonstrated increased sensitivity of FISH using QDs in comparison with organic fluorophores. These techniques gave excellent histological results both for multiplex FISH and combined FISH and immunohistochemistry. This approach can facilitate the ultrasensitive simultaneous study of multiple mRNA and protein markers in tissue culture and histological section.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.