Today, the current buffered router Synchronous Network on Chip architecture consumes significant chip area and power. Therefore, based on biased routing, buffer-less routers have recently been predicted as a possible solution, but they suffer from contiguous port assignments, slow critical paths, and increased latency. Asynchronous Network on Chip architecture emerges as the best option for avoiding glitches and consuming less power. A clock and data recovery circuit is used to recover the clock signal from the router-generated data and reduce power consumption in a Multiprocessor System on Chip. This paper proposes a clock and data recovery circuit design for an asynchronous Network on Chip. The proposed 4x4 Mesh router architecture implemented in this paper can process 64-bit of data samples with a depth of 64. When comparing the proposed architecture with the existing NoC architecture, the proposed architecture has shown a power reduction of 5times. The proposed architecture has consumed a total power of 0.103W.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.