We apply the Google PageRank algorithm to assess the relative importance of all publications in the Physical Review family of journals from 1893 to 2003. While the Google number and the number of citations for each publication are positively correlated, outliers from this linear relation identify some exceptional papers or "gems" that are universally familiar to physicists.
We investigate the long-time behavior of a majority rule opinion dynamics model in finite spatial dimensions. Each site of the system is endowed with a two-state spin variable that evolves by majority rule. In a single update event, a group of spins with a fixed (odd) size is specified and all members of the group adopt the local majority state. Repeated application of this update step leads to a coarsening mosaic of spin domains and ultimate consensus in a finite system. The approach to consensus is governed by two disparate time scales, with the longer time scale arising from realizations in which spins organize into coherent single-opinion bands. The consequences of this geometrical organization on the long-time kinetics are explored.
a b s t r a c tWe investigate the community structure of physics subfields in the citation network of all Physical Review publications between 1893 and August 2007. We focus on well-cited publications (those receiving more than 100 citations), and apply modularity maximization to uncover major communities that correspond to clearly identifiable subfields of physics. While most of the links between communities connect those with obvious intellectual overlap, there sometimes exist unexpected connections between disparate fields due to the development of a widely applicable theoretical technique or by cross fertilization between theory and experiment. We also examine communities decade by decade and also uncover a small number of significant links between communities that are widely separated in time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.