Chymosin can specifically break down the Phe105-Met106 peptide bond of milk κ-casein to form insoluble para-κ-casein, resulting in milk coagulation, a process that is used in making cheese. In this study, in order to obtain an alternative milk coagulant which is safe and efficient, and simultaneously can produce cheese with a good taste, bovine prochymosin B was chosen and constitutively expressed to a high level in Pichia pastoris. The recombinant chymosin was expressed mainly as a secretory form, and it exhibited milk-clotting activity. It was purified by ammonium sulfate fractionation, anion exchange, followed by cation exchange chromatography. A final yield of 24.2% was obtained for the purified enzyme, which appeared as a single band in SDS-PAGE having a molecular mass of approximate 36 kDa. Proteolysis assay showed that it specifically hydrolyzed κ-casein. It was stable at 25-50°C and had optimal activity at 37°C and pH 4.0. The activity of the recombinant chymosin was activated by cations such as Mn(2+), Fe(3+), Mg(2+) and Na(+), but inhibited by K(+), Co(2+), Zn(2+), Ni(2+), and to a lesser extent by Cu(2+). These results suggested that recombinant bovine chymosin is an acid milk coagulant, and it could be considered as a safe and efficient enzyme suitable for use in cheese production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.