In this paper, we propose and demonstrate a novel wireless camera network system, called CITRIC. The core component of this system is a new hardware platform that integrates a camera, a frequency-scalable (up to 624 MHz) CPU, 16 MB FLASH, and 64 MB RAM onto a single device. The device then connects with a standard sensor network mote to form a camera mote. The design enables in-network processing of images to reduce communication requirements, which has traditionally been high in existing camera networks with centralized processing. We also propose a back-end client/server architecture to provide a user interface to the system and support further centralized processing for higher-level applications. Our camera mote enables a wider variety of distributed pattern recognition applications than traditional platforms because it provides more computing power and tighter integration of physical components while still consuming relatively little power. Furthermore, the mote easily integrates with existing low-bandwidth sensor networks because it can communicate over the IEEE 802.15.4 protocol with other sensor network platforms. We demonstrate our system on three applications: image compression, target tracking, and camera localization.
Abstract-This paper considers the problem of pursuit evasion games (PEGs), where a group of pursuers is required to chase and capture a group of evaders in minimum time with the aid of a sensor network. We assume that a sensor network is previously deployed and provides global observability of the surveillance region, allowing an optimal pursuit policy. While sensor networks provide global observability, they cannot provide high quality measurements in a timely manner due to packet losses, communication delays, and false detections. This has been the main challenge in developing a real-time control system using sensor networks. We address this challenge by developing a real-time hierarchical control system which decouples the estimation of evader states from the control of pursuers via multiple layers of data fusion. While a sensor network generates noisy, inconsistent, and bursty measurements, the multiple layers of data fusion convert them into consistent and high quality measurements and forward them to the controllers of pursuers in a timely manner. For this control system, three new algorithms are developed: multi-sensor fusion, multi-target tracking and multi-agent coordination algorithms. The multi-sensor fusion algorithm converts correlated sensor measurements into position estimates, the multi-target tracking algorithm tracks an unknown number of targets, and the multi-agent coordination algorithm coordinates pursuers to capture all evaders in minimum time using a robust minimum-time feedback controller. The combined system is evaluated in simulation and tested in a sensor network deployment. To our knowledge, this paper presents the first demonstration of multi-target tracking using a sensor network without relying on classification.
Ferromagnetism is predicted in undoped diluted magnetic semiconductors illuminated by intense sub-band-gap laser radiation. The mechanism for photoinduced ferromagnetism is coherence between conduction and valence bands induced by the light which leads to an optical exchange interaction. The ferromagnetic critical temperature T(C) depends both on the properties of the material and on the frequency and intensity of the laser and could be above 1K.
The experimental results in size dependence of electronic structure and optical band gap show that the nanocrystalline ZnO has two binding states which energies are lower than that of the bulk ZnO. This size dependence of binding states is associated with the number of broken bonds of the individual Zn ion, which could be modified by size reduction in nanoscale. Varying the number of broken bonds on the surface and the underneath layer might result in possible complications in the electronic structure of the nanocrystalline ZnO, thus giving rise to different optical properties rather than those relating to quantum size effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.