The world atlas of zenith artificial night sky brightness is modelled with VIIRS DNB data and calibrated with more than 35,000 observations.
A B S T R A C TWe present the first World Atlas of the zenith artificial night sky brightness at sea level. Based on radiance-calibrated high-resolution DMSP satellite data and on accurate modelling of light propagation in the atmosphere, it provides a nearly global picture of how mankind is proceeding to envelop itself in a luminous fog. Comparing the Atlas with the United States Department of Energy (DOE) population density data base, we determined the fraction of population who are living under a sky of given brightness. About two-thirds of the World population and 99 per cent of the population in the United States (excluding Alaska and Hawaii) and European Union live in areas where the night sky is above the threshold set for polluted status. Assuming average eye functionality, about one-fifth of the World population, more than two-thirds of the United States population and more than one half of the European Union population have already lost naked eye visibility of the Milky Way. Finally, about onetenth of the World population, more than 40 per cent of the United States population and one sixth of the European Union population no longer view the heavens with the eye adapted to night vision, because of the sky brightness.
Light pollution is one of the most rapidly increasing types of environmental degradation. Its levels have been growing exponentially over the natural nocturnal lighting levels provided by starlight and moonlight. To limit this pollution several effective practices have been defined: the use of shielding on lighting fixture to prevent direct upward light, particularly at low angles above the horizon; no over lighting, i.e. avoid using higher lighting levels than strictly needed for the task, constraining illumination to the area where it is needed and the time it will be used. Nevertheless, even after the best control of the light distribution is reached and when the proper quantity of light is used, some upward light emission remains, due to reflections from the lit surfaces and atmospheric scatter. The environmental impact of this "residual light pollution", cannot be neglected and should be limited too. Here we propose a new way to limit the effects of this residual light pollution on wildlife, human health and stellar visibility. We performed analysis of the spectra of common types of lamps for external use, including the new LEDs. We evaluated their emissions relative to the spectral response functions of human eye photoreceptors, in the photopic, scotopic and the 'meltopic' melatonin suppressing bands. We found that the amount of pollution is strongly dependent on the spectral characteristics of the lamps, with the more environmentally friendly lamps being low pressure sodium, followed by high pressure sodium. Most polluting are the lamps with a strong blue emission, like Metal Halide and white LEDs. Migration from the now widely used sodium lamps to white lamps (MH and LEDs) would produce an increase of pollution in the scotopic and melatonin suppression bands of more than five times the present levels, supposing the same photopic installed flux. This increase will exacerbate known and possible unknown effects of light pollution on human health, environment and on visual perception of the Universe by humans. We present quantitative criteria to evaluate the lamps based on their spectral emissions and we suggest regulatory limits for future lighting.
Nightsat is a concept for a satellite system capable of global observation of the location, extent and brightness of night-time lights at a spatial resolution suitable for the delineation of primary features within human settlements. Based on requirements from several fields of scientific inquiry, Nightsat should be capable of producing a complete cloud-free global map of lights on an annual basis. We have used a combination of high-resolution field spectra of outdoor lighting, moderate resolution colour photography of cities at night from the International Space Station, and high-resolution airborne camera imagery acquired at night to define a range of spatial, spectral, and detection limit options for a future Nightsat mission. The primary findings of our study are that Nightsat should collect data from a near-synchronous orbit in the early evening with 50 to 100 m spatial resolution and have detection limits of 2.5E 28 Watts cm 22 sr 21 mm 21 or better. Although panchromatic low-light imaging data would be useful, multispectral low-light imaging data would provide valuable information on the type or character of lighting; potentially stronger predictors of variables, such as ambient population density and economic activity; and valuable information to predict response of other species to artificial night lighting. The Nightsat mission concept is unique in its focus on observing a human activity, in contrast to traditional Earth observing systems that focus on natural systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.