The last interglacial, commonly understood as an interval with climate as warm or warmer than today, is represented by marine isotope stage (MIS) 5e, which is a proxy record of low global ice volume and high sea level. It is arbitrarily dated to begin at approximately 130,000 yr B.P. and end at 116,000 yr B.P. with the onset of the early glacial unit MIS 5d. The age of the stage is determined by correlation to uranium-thorium dates of raised coral reefs. The most detailed proxy record of interglacial climate is found in the Vostok ice core where the temperature reached current levels 132,000 yr ago and continued rising for another two millennia. Approximately 127,000 yr ago the Eemian mixed forests were established in Europe. They developed through a characteristic succession of tree species, probably surviving well into the early glacial stage in southern parts of Europe.
Eight continuous corings in the west-central Netherlands show a 15 to 25 m thick stacked sequence of sandy to gravelly channel-belt deposits of the Rhine-Meuse system. This succession of fluvial sediments was deposited under net subsiding conditions in the southern part of the North Sea Basin and documents the response of the Rhine-Meuse river system to climate and sea-level change and to the glaciation history. On the basis of grain size characteristics, sedimentological structures, nature and extent of bounding surfaces and palaeo-ecological data, the sequence was subdivided into five fluvial units, an estuarine and an aeolian unit. Optical dating of 34 quartz samples showed that the units have intra Saalian to Weichselian ages (Marine Isotope Stages 8 to 2). Coarse-grained fluvial sediments primarily deposited under cold climatic conditions, with low vegetation cover and continuous permafrost. Finer-grained sediments generally deposited during more temperate climatic conditions with continuous vegetation cover and/or periods of sea-level highstand. Most of the sedimentary units are bounded by unconformities that represent erosion during periods of climate instability, sea-level fall and/or glacio-isostatic uplift.
In order to obtain a better understanding of the infilling of the Saalian glacial basins during the Eemian, particularly following the recent research in the Amsterdam Basin (Terminal borehole), it was necessary to re-investigate the type locality of the Eemian at Amersfoort. Both published and unpublished data from various biota (diatoms, foraminifers, molluscs, ostracods, pollen) provide new information on the changing sedimentary environments during the Eemian. Although the organic and clastic sediments of the infilling represent nearly all the pollen zones, the sedimentary sequence at Amersfoort is discontinuous: four breaks at least are recognised at the type locality.The successive sedimentary environments and the breaks in the record are linked with the transgression of the Eemian sea, the topographic position at the margin of an ice-pushed ridge, and the changes in hydrodynamic conditions. Local conditions, such as a sandy sea bed, shallow water and a reduced water exchange near the North Sea margin, influenced the salinity of the basin. Rib counts of Cerastoderma edule shells indicate a higher salinity at the end of the Taxus (E4b) and the beginning of the Carpinus (E5) zones than that present in the modern North Sea. Local conditions were responsible for the higher salinity following the climate optimum.During the Abies phase (the later part of regional pollen zone E5), the sea level had already fallen. The change from eu-trophic peat growth (with Alnus and Salix) to an oligotrophic Ericaceae/Sphagnum community at the end of the Eemian resulted from the change from a marine to a fresh-water environment, probably coherent with a deterioration of the climate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.