We have developed a dual-plenum gas valve coupled to a double shell nozzle for the generation of “shell-on-shell” gas loads in z-pinch plasma radiation source experiments. The gas density profiles of the nozzles have been characterized with laser interferometry. This valve/nozzle combination has been successfully fielded on the Double-EAGLE and Saturn pulsed-power generators. The design and characterization of the shell-on-shell valve/nozzle are presented in this article.
The dynamics and characteristics of the plasma sheath during the axial phase in a ∼300 kA, ∼2 kJ dense plasma focus using a static gas load of Ne at 1–4 Torr are reported. The sheath, which is driven axially at a constant velocity ∼105 m/s by the j × B force, is observed using optical imaging, to form an acute angle between the electrodes. This angle becomes more acute (more parallel to the axis) along the rundown. The average sheath thickness nearer the anode is 0.69 ± 0.02 mm and nearer the cathode is 0.95 ± 0.02 mm. The sheath total mass increases from 1 ± 0.02 μg to 6 ± 0.02 μg over the pressure range of 1–4 Torr. However, the mass fraction (defined as the sheath mass/total mass of cold gas between the electrodes) decreases from 7% to 5%. In addition, the steeper the plasma sheath, the more mass is lost from the sheath, which is consistent with radial and axial motion. Experimental results are compared to the Lee code when 100% of the current drives the axial and radial phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.