Ablation of Cu and Al targets has been performed with 170 fs laser pulses in the intensity range of 10 12 -10 14 W/cm 2 . We compare the measured removal depth with 1D hydrodynamic simulations. The electron-ion temperature decoupling is taken into account using the standard two-temperature model. The influence of the early heat transfer by electronic thermal conduction on hydrodynamic material expansion and mechanical behavior is investigated. A good agreement between experimental and numerical matter ablation rates shows the importance of including solid-to-vapor evolution of the metal in the current modeling of the laser matter interaction.
A general approach for optically controlled spatial structuring of overdense plasmas generated at the surface of initially plain solid targets is presented. We demonstrate it experimentally by creating sinusoidal plasma gratings of adjustable spatial periodicity and depth, and study the interaction of these transient structures with an ultraintense laser pulse to establish their usability at relativistically high intensities. We then show how these gratings can be used as a "spatial ruler" to determine the source size of the high-order harmonic beams produced at the surface of an overdense plasma. These results open new directions both for the metrology of laser-plasma interactions and the emerging field of ultrahigh intensity plasmonics.
Spallation induced by a laser driven shock has been studied for two decades on time scales of nanosecond order. The evolution of laser technologies now opens access to sources whose pulse duration is under the picosecond, corresponding to characteristic times of numerous microscopic phenomena. In this ultra-short irradiation regime, spallation experiments have been performed with time-resolved measurements of the free surface. These measurements, complemented with post-test observations, have been compared with numerical simulations to check the consistency of modelling of the laser–matter interaction, shock propagation and to the study of dynamic damage at this ultra-short time scale, inducing strong tensile stress states at very high strain rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.