Three model peptides containing B-epitopes from conserved, non-repetitive regions of the merozoite surface antigens, MSA2 and MSA1, and the erythrocyte binding protein EBP of Plasmodium falciparum were synthesised. The peptides incorporated GPG spacers and C residues at the N and C termini, and were polymerised by oxidation to form cystine bridges. Multiple copies of essentially the same peptide sequences were also synthesised on a branching lysyl matrix to form a tetrameric multiple antigen peptide. Rabbits were immunised with the polymerised and multiple antigen peptides, in alum followed by Freund's adjuvant, and the antibody responses examined by IFA and ELISA. Reproducible antibody responses were obtained against the MSA1 and EBP but not MSA2 peptides. IgG antibody levels detected by ELISA after three injections of antigen in alum, increased significantly after further immunisation in Freund's adjuvant. IgG levels were largely maintained for at least 23 weeks after the final immunisation. IgM antibodies, generally detectable only after immunisation in Freund's adjuvant, were absent 23 weeks later. Antibody titres against the native protein on fixed parasites, assayed by IFA, were three to five orders of magnitude lower than the corresponding ELISA titres against the peptides. Antibody-dependent inhibition of P. falciparum growth in vitro could not be demonstrated with the immune rabbit sera. The MSA1 and EBP peptides elicited cross-reactive antibodies. The results suggest that the selected non-repetitive sequences are conformationally constrained in the native proteins and only a small proportion of the anti-peptide antibodies bind to the native proteins. The significance of the findings for the development of peptide vaccines and the use of peptides in immunoassays is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.