One of the largest obstacles facing scanning probe microscopy is the constant need to correct flaws in the scanning probe in situ. This is currently a manual, time-consuming process that would benefit greatly from automation. Here we introduce a convolutional neural network protocol that enables automated recognition of a variety of desirable and undesirable scanning probe tip states on both metal and non-metal surfaces. By combining the best performing models into majority voting ensembles, we find that the desirable states of H:Si(100) can be distinguished with a mean precision of 0.89 and an average receiver-operator-characteristic curve area of 0.95. More generally, high and low-quality tips can be distinguished with a mean precision of 0.96 and near perfect area-under-curve of 0.98. With trivial modifications, we also successfully automatically identify undesirable, non-surface-specific states on surfaces of Au(111) and Cu(111). In these cases we find mean precisions of 0.95 and 0.75 and area-under-curves of 0.98 and 0.94, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.