Reduced access to resources because of increased stocking density may have a detrimental effect on the behavior of the lactating dairy cow. The objective of this study was to determine the short-term responses in behavior, productivity, fecal cortisol metabolites, and udder and leg hygiene of lactating Holstein dairy cows housed at stocking densities of 100 (1 cow per freestall and headlock), 113, 131, and 142%. Multiparous cows (n=92) and primiparous cows (n=44) were assigned to 1 of 4 pens (34 cows per pen) in a 4-row freestall barn. Pens were balanced for parity, milk production, and days in milk. Stocking densities were imposed for 14 d using a 4 × 4 Latin square design. Time spent feeding and time spent ruminating were quantified by 24 h of direct observation of focal cows (n=12 per pen) beginning at 0800 h on d 11 of each period. Data loggers recorded lying behavior (time and bouts) from the same focal cows per pen at 1-min intervals during the final 5 d of each period. Fecal cortisol metabolites were quantified from samples collected on d 13 and 14 of each period from the same focal cows. Displacements from the feed barrier were recorded on a pen basis after 9 milkings over the last 4 d of each period. Productivity was assessed on a pen basis from milk yield (recorded from d 10 to 14 of each period) and milk components (quantified from composite samples collected on d 12 of each period). Milk composition was further analyzed for milk fatty acid profiles, which were determined from a subset (n=6 per pen) of the focal cows. Data were analyzed using the MIXED procedure of SAS, with the pen (n=4 per treatment, except displacements where n=3 per treatment) as the experimental unit. Feeding and ruminating (h/d) did not differ among treatments. Lying time was reduced at stocking densities of 131 and 142%, relative to 100 or 113%. Lying bouts were not affected by treatment. Stocking densities of 131 and 142% reduced the percentage of time cows spent ruminating within a freestall relative to 100%. Displacements from the feed bunk increased linearly across treatments. Fecal cortisol metabolites, udder hygiene score, milk yields, milk composition, and milk fatty acids did not differ among treatments. Decreased lying time and increased aggression at the feed bunk suggest that an alteration of the time budgets of lactating dairy cows may occur at higher stocking densities, but it is unclear at what point these changes might have further biological consequences.
The objective of this experiment was to measure ruminal and lactational responses of Holstein dairy cows fed diets containing 3 different starch levels: 17.7 (low; LS), 21.0 (medium; MS), or 24.6% (high; HS). Twelve multiparous cows (118 ± 5 d in milk) were assigned randomly to dietary treatment sequence in a replicated 3 × 3 Latin square design with 3-wk periods. All diets were fed as total mixed rations and contained approximately 30.2% corn silage, 18.5% grass silage, and 5.0% chopped alfalfa hay. Dietary starch content was manipulated by increasing dry ground corn inclusion (% of dry matter) from 3.4 (LS) to 10.1 (MS) and 16.9 (HS) and decreasing inclusion of beet pulp and wheat middlings from 6.7 and 13.4 (LS) to 3.4 and 10.1 (MS) or 0 and 6.8 (HS). In vitro 6-h starch digestibility of the diet increased as nonforage sources of fiber replaced corn grain (% of dry matter; 73.6, HS; 77.3, MS; 82.5, LS) resulting in rumen-fermentable starch content by 14.6, 16.2, and 18.1% for the LS, MS, and HS diets, respectively. Diets had similar neutral detergent fiber from forage and particle size distributions. Dry matter intake, solids-corrected milk yield, and efficiency of solids-corrected milk production were unaffected by diet, averaging 26.5 ± 0.8, 40.8 ± 1.6, and 1.54 ± 0.05 kg/d, respectively. Reducing dietary starch did not affect chewing time (815 ± 23 min/d), mean ruminal pH over 24h (6.06 ± 0.12), acetate-to-propionate ratio (2.4 ± 0.3), or microbial N synthesized in the rumen (585 ± 24 g/d). Total tract organic matter digestibility was higher for HS compared with MS and LS diets (69.2, 67.3, and 67.0%, respectively), but crude protein, neutral detergent fiber, and starch digestibilities were unaffected. As dietary starch content decreased, in vitro ruminal starch fermentability increased and, consequently, the range between HS and LS in rumen-fermentable starch (3.5 percentage units) was less than the range in starch content (6.9 percentage units). Under these conditions, dietary starch content had no measurable effect on ruminal fermentation or short-term lactational performance of high-producing Holstein dairy cows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.