The solid I section beam with creating hexagonal cavities (openings) has numerous advantages over conventional rolled sections. As they are light weight, strong, cheap and elegant. The opening in the web simplifies the work of the installer and the electrician, since taking pipes across beams presents no problems. A cellular beam (circular openings) is the modern version of the traditional castellated beam. The beam comprises pronouncedly asymmetric cellular tees, to provide a wide bearing for either pre-cast units or a profiled metal deck. The elastic finite element analysis of castellated beam and cellular beam is carried out to understand its behaviour under load. The failure pattern and stresses developed under same loading condition are studied. Based on the various modes of failure, the applicable methods of analysis are studied which includes plastic analysis, mid post yielding and buckling analysis. From the previous experimental results, one beam is selected and analyzed. Then the no of openings is varied as 2, 4 and 6 in selected beam. The shape of opening is considered as hexagonal and circular of same cross sectional area. The support conditions are considered as fixed, hinged and roller. Overall 18 cases are studied for same central point load and span with change of spacing of openings. The maximum Deflection and the maximum VonMises stress are worked out. The comparative study is carried out using software for finite element analysis ANSYS.
In today’s construction, the traditional slab is mostly supported by a beam, with a small slab thickness and a large beam depth, and the weight is carried from beam to column. The flat slab allows architects to place partition walls wherever they are needed. It is widely used because it reduces weight, speeds up building, and is cost effective. Similarly, since its inception, the conventional slab has provided benefits such as increased stiffness, increased weight carrying ability, as well as being safe and cost effective. Grid slabs are necessary where the span is greater, and grid beams are provided to lessen the spanning. Grid slabs reduce dead load due to voids and are appropriate for longer spans with heavy loads. The Grid slab is less expensive and provides superior vibration resistance. The project’s goal is to find the most cost-effective slab among standard slab, flat slab with drop, and grid slab. A G+5 Commercial multi-story structure with flat slab, conventional slab, and gird slab was investigated for characteristics such as storey displacement, shear force, bending moment, and storey drift in this study. There are a total of 18 structures examined. The performance and behaviour of all structures in India’s seismic zone III have been investigated with the application of dead load, live load and seismic load. The results of shear force, Bending Moment, story shear, story displacement, story drift and quantity of concrete and steel shows that the overall result values makes flat slab a suitable structure as compared to the conventional and grid slab.
“Castellated beam” is a name commonly used for type of expanded beam. Castellated beams combine beauty, versatility, economy in steel design. These are fabricated from standard rolled section and are engineered to save time of construction, enabling saving in steel and reducing building costs. These are mainly designed to reduce weight and at the same time increase the efficiency in structural performance. The principal advantage of castellation is the increase in vertical bending stiffness castellated beams have proved to be efficient for moderately loaded longer spans where the Design is controlled by moment capacity or deflection. In this paper a steel beam is selected and Finite Element Analysis is done for constant loading and support condition by using ANSYS software. The deflection pattern at the center of castellated beam is studied for different parametric conditions by changing depth of hexagon to the depth of web ratio and also by changing the position of hexagon along the length of the beam. A comparison is done for various conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.