Thin film solar cells (TFSC) are a promising approach for terrestrial and space photovoltaics and offer a wide variety of choices in terms of the device design and fabrication. A variety of substrates (flexible or rigid, metal or insulator) can be used for deposition of different layers (contact, buffer, absorber, reflector, etc.) using different techniques (PVD, CVD, ECD, plasma‐based, hybrid, etc.). Such versatility allows tailoring and engineering of the layers in order to improve device performance. For large‐area devices required for realistic applications, thin‐film device fabrication becomes complex and requires proper control over the entire process sequence. Proper understanding of thin‐film deposition processes can help in achieving high‐efficiency devices over large areas, as has been demonstrated commercially for different cells. Research and development in new, exotic and simple materials and devices, and innovative, but simple manufacturing processes need to be pursued in a focussed manner. Which cell(s) and which technologies will ultimately succeed commercially continue to be anybody's guess, but it would surely be determined by the simplicity of manufacturability and the cost per reliable watt. Cheap and moderately efficient TFSC are expected to receive a due commercial place under the sun. Copyright © 2004 John Wiley & Sons, Ltd.
Optical constants of polycrystalline thin film CuIn1−xGaxSe2 alloys with Ga/(Ga+In) ratios from 0 to 1 have been determined by spectroscopic ellipsometry over an energy range of 0.75–4.6 eV. CuIn1−xGaxSe2 films were deposited by simultaneous thermal evaporation of elemental copper, indium, gallium and selenium. X-ray diffraction measurements show that the CuIn1−xGaxSe2 films are single phase. Due to their high surface roughness, the films are generally not suitable for ellipsometer measurements. A method is presented in which spectroscopic ellipsometer measurements were carried out on the reverse side of the CuIn1−xGaxSe2 films immediately after peeling them from Mo-coated soda lime glass substrates. A detailed description of multilayer optical modeling of ellipsometric data, generic to ternary chalcopyrite films, is presented. Accurate values of the refractive index and extinction coefficient were obtained and the effects of varying Ga concentrations on the electronic transitions are presented.
A Cu(InAl)Se2 solar cell with 16.9% efficiency is demonstrated using a Cu(InAl)Se2 thin film deposited by four-source elemental evaporation and a device structure of glass/Mo/Cu(InAl)Se2/CdS/ZnO/indium tin oxide/(Ni/Algrid)/MgF2. A key to high efficiency is improved adhesion between the Cu(InAl)Se2 and the Mo back contact layer, provided by a 5-nm-thick Ga interlayer, which enabled the Cu(InAl)Se2 to be deposited at a 530 °C substrate temperature. Film and device properties are compared to Cu(InGa)Se2 with the same band gap of 1.16 eV. The solar cells have similar behavior, with performance limited by recombination through trap states in the space charge region in the Cu(InAl)Se2 or Cu(InGa)Se2 layer.
CuIn 1−x Al x Se 2 thin films are investigated for their application as the absorber layer material for high efficiency solar cells. Single-phase CuIn1−xAlxSe2 films were deposited by four source elemental evaporation with a composition range of 0⩽x⩽0.6. All these films demonstrate a normalized subband gap transmission >85% with 2 μm film thickness. Band gaps obtained from spectroscopic ellipsometry show an increase with the Al content in the CuIn1−xAlxSe2 film with a bowing parameter of 0.62. The structural properties investigated using x-ray diffraction measurements show a decrease in lattice spacing as the Al content increases. Devices with efficiencies greater than 10% are fabricated on CuIn1−xAlxSe2 material over a wide range of Al composition. The best device demonstrated 11% efficiency, and the open circuit voltage increases to 0.73 V.
The principal techniques used in the physical characterization of thin-film solar cells and materials are reviewed, these being scanning probe microscopy (SPM), X-ray diffraction (XRD), spectroscopic ellipsometry, transmission electron microscopy (TEM), Auger electron spectroscopy (AES), secondary-ion mass spectrometry (SIMS), X-ray photoelectron spectroscopy (XPS), photoluminescence and timeresolved photoluminescence (TRPL), electron-beam-induced current (EBIC) and light-beam-induced current (LBIC). For each method the particular applicability to thin-film solar cells is highlighted. Examples of the use of each are given, these being drawn from the chalcopyrite, CdTe, Si and III-V materials systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.