Phenotypic integration is a pervasive characteristic of organisms. Numerous analyses have demonstrated that patterns of phenotypic integration are conserved across large clades, but that significant variation also exists. For example, heterochronic shifts related to different mammalian reproductive strategies are reflected in postcranial skeletal integration and in coordination of bone ossification. Phenotypic integration and modularity have been hypothesized to shape morphological evolution, and we extended simulations to confirm that trait integration can influence both the trajectory and magnitude of response to selection. We further demonstrate that phenotypic integration can produce both more and less disparate organisms than would be expected under random walk models by repartitioning variance in preferred directions. This effect can also be expected to favour homoplasy and convergent evolution. New empirical analyses of the carnivoran cranium show that rates of evolution, in contrast, are not strongly influenced by phenotypic integration and show little relationship to morphological disparity, suggesting that phenotypic integration may shape the direction of evolutionary change, but not necessarily the speed of it. Nonetheless, phenotypic integration is problematic for morphological clocks and should be incorporated more widely into models that seek to accurately reconstruct both trait and organismal evolution.
Facial length is one of the best known examples of heterochrony. Changes in the timing of facial growth have been invoked as a mechanism for the origin of our short human face from our long-faced extinct relatives. Such heterochronic changes arguably permit great evolutionary flexibility, allowing the mammalian face to be remodelled simply by modifying postnatal growth. Here we present new data that show that this mechanism is significantly constrained by adult size. Small mammals are more brachycephalic (short faced) than large ones, despite the putative independence between adult size and facial length. This pattern holds across four phenotypic lineages: antelopes, fruit bats, tree squirrels and mongooses. Despite the apparent flexibility of facial heterochrony, growth of the face is linked to absolute size and introduces what seems to be a loose but clade-wide mammalian constraint on head shape.
Conservation of species and ecosystems is increasingly difficult because anthropogenic impacts are pervasive and accelerating. Under this rapid global change, maximizing conservation success requires a paradigm shift from maintaining ecosystems in idealized past states toward facilitating their adaptive and functional capacities, even as species ebb and flow individually. Developing effective strategies under this new paradigm will require deeper understanding of the long-term dynamics that govern ecosystem persistence and reconciliation of conflicts among approaches to conserving historical versus novel ecosystems. Integrating emerging information from conservation biology, paleobiology, and the Earth sciences is an important step forward on the path to success. Maintaining nature in all its aspects will also entail immediately addressing the overarching threats of growing human population, overconsumption, pollution, and climate change.
BackgroundAlthough variation provides the raw material for natural selection and evolution, few empirical data exist about the factors controlling morphological variation. Because developmental constraints on variation are expected to act by influencing trait correlations, studies of modularity offer promising approaches that quantify and summarize patterns of trait relationships. Modules, highly-correlated and semi-autonomous sets of traits, are observed at many levels of biological organization, from genes to colonies. The evolutionary significance of modularity is considerable, with potential effects including constraining the variation of individual traits, circumventing pleiotropy and canalization, and facilitating the transformation of functional structures. Despite these important consequences, there has been little empirical study of how modularity influences morphological evolution on a macroevolutionary scale. Here, we conduct the first morphometric analysis of modularity and disparity in two clades of placental mammals, Primates and Carnivora, and test if trait integration within modules constrains or facilitates morphological evolution.Principal FindingsWe used both randomization methods and direct comparisons of landmark variance to compare disparity in the six cranial modules identified in previous studies. The cranial base, a highly-integrated module, showed significantly low disparity in Primates and low landmark variance in both Primates and Carnivora. The vault, zygomatic-pterygoid and orbit modules, characterized by low trait integration, displayed significantly high disparity within Carnivora. 14 of 24 results from analyses of disparity show no significant relationship between module integration and morphological disparity. Of the ten significant or marginally significant results, eight support the hypothesis that integration within modules constrains morphological evolution in the placental skull. Only the molar module, a highly-integrated and functionally important module, showed significantly high disparity in Carnivora, in support of the facilitation hypothesis.ConclusionsThis analysis of within-module disparity suggested that strong integration of traits had little influence on morphological evolution over large time scales. However, where significant results were found, the primary effect of strong integration of traits was to constrain morphological variation. Thus, within Primates and Carnivora, there was some support for the hypothesis that integration of traits within cranial modules limits morphological evolution, presumably by limiting the variation of individual traits.
Morphological integration and modularity are closely related concepts about how different traits of an organism are correlated. Integration is the overall pattern of intercorrelation; modularity is the partitioning of integration into evolutionarily or developmentally independent blocks of traits. Modularity and integration are usually studied using quantitative phenotypic data, which can be obtained either from extant or fossil organisms. Many methods are now available to study integration and modularity, all of which involve the analysis of patterns found in trait correlation or covariance matrices. We review matrix correlation, random skewers, fluctuating asymmetry, cluster analysis, Euclidean distance matrix analysis (EDMA), graphical modelling, two-block partial least squares, RV coefficients, and theoretical matrix modelling and discuss their similarities and differences. We also review different coefficients that are used to measure correlations. We apply all the methods to cranial landmark data from and ontogenetic series of Japanese macaques,Macaca fuscatato illustrate the methods and their individual strengths and weaknesses. We conclude that the exploratory approaches (cluster analyses of various sorts) were less informative and less consistent with one another than were the results of model testing or comparative approaches. Nevertheless, we found that competing models of modularity and integration are often similar enough that they are not statistically distinguishable; we expect, therefore, that several models will often be significantly correlated with observed data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.