The durability of concrete is critical to its worldwide use as a structural material for buildings and infrastructure, with the lifetime service of concrete greatly affecting its economic, environmental, and social costs. Causes of durability loss in some concrete structures can be attributed to the alkali–silica reaction (ASR) and delayed ettringite formation (DEF). Both are chemical reactions that have the potential to cause expansion and strength loss in affected elements. Significant overlap exists in the factors contributing to ASR and DEF in concrete structures, with widely reported evidence of deleterious DEF frequently occurring in conjunction with mild or moderate ASR. For precast concrete, experiments in mortars have provided limits in the alkali and sulfate content of the binder and maximum curing temperatures used to minimize DEF risk. The role of other constituents in concrete specimens, notably the aggregate, has been overlooked. We investigated the role of reactive aggregates and ASR in the susceptibility of concrete to deleterious DEF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.