Maintenance of the plasmid pTG201 in Escherichia coli BZ18 was studied for both free and immobilized cells during chemostat culture, in the absence of the antibiotic against which resistance was plasmid encoded. Electron microscopic observations of immobilized proliferant cells within carrageenan gel beads showed high cell concentrations and growth into distinct cavities. The plasmid which coded for the catechol 2,3-dioxygenase activity was stably maintained during 80 generations in the case of immobilized cells. A theoretical analysis founded on the compartmentalization resulting from the immobilized growth conditions was described. However, the model still showed a plasmid stability inferior to that determined experimentally. Hypotheses dealing with physiological changes of immobilized cells were presented. In addition, the high cell concentrations obtained in the outer 50 microns of the carrageenan gel beads gave a biomass productivity within this useful volume which was 20 times higher than in free-cell cultures.
Stability of the plasmid pKK223-200 in Escherichia coli JM105 was studied for both free and immobilized cells during continuous culture. The relationship between plasmid copy number, xylanase activity, which was coded for by the plasmid, and growth rate and culture conditions involved complex interactions which determined the plasmid stability. Generally, the plasmid stability was enhanced in cultured immobilized cells compared with free-cell cultures. This stability was associated with modified plasmid copy number, depending on the media used. Hypotheses are presented concerning the different plasmid instability kinetics observed in free-cell cultures which involve the antagonistic effects of plasmid copy number and plasmid presence on the plasmid-bearing/plasmid-free cell growth rate ratio. Both diffusional limitation in carrageenan gel beads, which is described in Theoretical Analysis of Immobilized-Cell Growth, and compartmentalized growth of immobilized cells are proposed to explain plasmid stability in immobilized cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.