As part of its HL-LHC upgrade program, the CMS Collaboration is developing a High Granularity Calorimeter (CE) to replace the existing endcap calorimeters. The CE is a sampling calorimeter with unprecedented transverse and longitudinal readout for both electromagnetic (CE-E) and hadronic (CE-H) compartments. The calorimeter will be built with ∼30,000 hexagonal silicon modules. Prototype modules have been constructed with 6-inch hexagonal silicon sensors with cell areas of 1.1 cm 2 , and the SKIROC2-CMS readout ASIC. Beam tests of different sampling configurations were conducted with the prototype modules at DESY and CERN in 2017 and 2018. This paper describes the construction and commissioning of the CE calorimeter prototype, the silicon modules used in the construction, their basic performance, and the methods used for their calibration.
For the High-Luminosity phase of LHC, the ATLAS experiment is proposing the addition of a High Granularity Timing Detector (HGTD) in the forward region, to mitigate the effects of the increased pile-up. The chosen detection technology is Low Gain Avalanche Detector (LGAD) silicon sensors that can provide an excellent timing resolution below 50 ps. The front-end read-out ASIC must exploit the large signal derivative and small noise provided by the sensor, while keeping low power consumption. This paper presents the results on the first prototype of a front-end ASIC, named ALTIROC0, which contains the analog stages (preamplifier and discriminator) of the read-out chip. The ASIC was characterised both alone and as part of a module with a 2×2 LGAD array of 1.1×1.1 mm2 pads bump-bonded to it. The various contributions of the electronics to the time resolution were investigated in test-bench measurements with a calibration setup. Both when the ASIC is alone or with a bump-bonded sensor, the jitter of the ASIC is better than 20 ps for an injected charge of 10 fC . The time walk effect, which arises from the different preamplifier response for various injected charges, can be corrected up to 10 ps using a Time Over Threshold measurement. The combined performance of the ASIC and the LGAD sensor, which was measured during a beam test campaign in October 2018 with pions of 120 GeV energy at the CERN SPS, is around 40 ps for all measured modules. All tested modules show good efficiency and time resolution uniformity.
Concomitant with this increase will be an increase in the number of interactions in each bunch crossing and a significant increase in the total ionising dose and fluence. One part of this upgrade is the replacement of the current endcap calorimeters with a high granularity sampling calorimeter equipped with silicon sensors, designed to manage the high collision rates [2]. As part of the development of this calorimeter, a series of beam tests have been conducted with different sampling configurations using prototype segmented silicon detectors. In the most recent of these tests, conducted in late 2018 at the CERN SPS, the performance of a prototype calorimeter equipped with ≈12, 000 channels of silicon sensors was studied with beams of high-energy electrons, pions and muons. This paper describes the custom-built scalable data acquisition system that was built with readily available FPGA mezzanines and low-cost Raspberry PI computers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.