Background: The study aims at revealing the fate of nanoparticles administered intravenously and intraperitoneally to adult female mice, some of which were pregnant. Gold nanoparticles were chosen as a model because these particles have been found to be chemically inert and at the same time are easily traced by autometallography (AMG) at both ultrastructural and light microscopic levels.
An easy to perform autometallographic technique (AMG) for capturing zinc ions in Alzheimer plaques is presented. The possibility of visualizing loosely bound or free zinc ions in tissue by immersion autometallography (iZnS(AMG)) is a relatively recent development. The iZnS(AMG) staining is caused by zinc-sulphur nanocrystals created in 1-2 mm thick brain slices that are immersed in a 0.1% sodium sulphide, 3% glutaraldehyde phosphate buffered solution, the NeoTimm Solution (NTS), for 3 days. When the zinc-sulphur nanocrystals are subsequently silver-enhanced by autometallography, the plaques are readily identified as spheres of dark interlacing strands of different sizes, embedded in the pattern of zinc-enriched terminals. The zinc specificity of the iZnS(AMG) technique was tested by immersion of brain slides in the chelator DEDTC prior to the NTS immersion. The iZnS(AMG) detection of zinc ions is easily standardized and can be used in the quantification of plaques with stereological methods. This technique is the first to detect zinc in plaques in the cerebellum of transgenic PS1/APP mice and the first to detect zinc ions in plaques and dystrophic neurites at electron microscopical levels.
BackgroundTraumatic brain injury (TBI) is one of the leading causes of disability and death among young people. Although much is already known about secondary brain damage the full range of brain tissue responses to TBI remains to be elucidated. A population of neurons located in cerebral areas associated with higher cognitive functions harbours a vesicular zinc pool co-localized with glutamate. This zinc enriched pool of synaptic vesicles has been hypothesized to take part in the injurious signalling cascade that follows pathological conditions such as seizures, ischemia and traumatic brain injury. Pathological release of excess zinc ions from pre-synaptic vesicles has been suggested to mediate cell damage/death to postsynaptic neurons.Methodology/Principal FindingsIn order to substantiate the influence of vesicular zinc ions on TBI, we designed a study in which damage and zinc movements were analysed in several different ways. Twenty-four hours after TBI ZnT3-KO mice (mice without vesicular zinc) were compared to littermate Wild Type (WT) mice (mice with vesicular zinc) with regard to histopathology. Furthermore, in order to evaluate a possible neuro-protective dimension of chemical blocking of vesicular zinc, we treated lesioned mice with either DEDTC or selenite. Our study revealed that chemical blocking of vesicular zinc ions, either by chelation with DEDTC or accumulation in zinc-selenium nanocrystals, worsened the effects on the aftermath of TBI in the WT mice by increasing the number of necrotic and apoptotic cells within the first 24 hours after TBI, when compared to those of chemically untreated WT mice.Conclusion/SignificanceZnT3-KO mice revealed more damage after TBI compared to WT controls. Following treatment with DEDTC or selenium an increase in the number of both dead and apoptotic cells were seen in the controls within the first 24 hours after TBI while the degree of damage in the ZnT3-KO mice remained largely unchanged. Further analyses revealed that the damage development in the two mouse strains was almost identical after either zinc chelation or zinc complexion therapy.
Traumatic brain injury results in loss of neurons caused as much by the resulting neuroinflammation as by the injury. Gold salts are known to be immunosuppressive, but their use are limited by nephrotoxicity. However, as we have proven that implants of pure metallic gold release gold ions which do not spread in the body, but are taken up by cells near the implant, we hypothesize that metallic gold could reduce local neuroinflammation in a safe way. Bio-liberation, or dissolucytosis, of gold ions from metallic gold surfaces requires the presence of disolycytes i.e. macrophages and the process is limited by their number and activity. We injected 20-45 mum gold particles into the neocortex of mice before generating a cryo-injury. Comparing gold-treated and untreated cryolesions, the release of gold reduced microgliosis and neuronal apoptosis accompanied by a transient astrogliosis and an increased neural stem cell response. We conclude that bio-liberated gold ions possess pronounced anti-inflammatory and neuron-protective capacities in the brain and suggest that metallic gold has clinical potentials. Intra-cerebral application of metallic gold as a pharmaceutical source of gold ions represents a completely new medical concept that bypasses the blood-brain-barrier and allows direct drug delivery to inflamed brain tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.