The effects of inhaling nitric oxide (NO) on airway mechanics were studied in anesthetized and mechanically ventilated guinea pigs. In animals without induced bronchoconstriction, breathing 300 ppm NO decreased baseline pulmonary resistance (RL) from 0.138±0.004 (mean±SE) to 0.125±0.002 cmH2O/ml s (P < 0.05). When an intravenous infusion of methacholine (3.5-12 ,ug/kg-min) was used to increase RL from 0.143±0.008 to 0.474±0.041 cmH2O/ml. s (P < 0.05), inhalation of 5-300 ppm NO-containing gas mixtures produced a dose-related, rapid, consistent, and reversible reduction of RL and an increase of dynamic lung compliance. The onset of bronchodilation was rapid, beginning within 30 s after commencing inhalation. An inhaled NO concentration of 15.0±2.1 ppm was required to reduce RL by 50% of the induced bronchoconstriction. Inhalation of 100 ppm NO for 1 h did not produce tolerance to its bronchodilator effect nor did it induce substantial methemoglobinemia (< 2%). The bronchodilating effects of NO were additive with the effects of inhaled terbutaline, irrespective of the sequence of NO and terbutaline administration. Inhaling aerosol generated from S-nitroso-N-acetylpenicillamine also induced a rapid and profound decrease of RL from 0.453±0.022 to 0.287±0.022 cmH2O/ml s, which lasted for over 15 min in guinea pigs bronchoconstricted with methacholine. Our results indicate that low levels ofinhaled gaseous NO, or an aerosolized NO-releasing compound are potent bronchodilators in guinea pigs. (J. Clin. Invest. 1992. 90:421428.)
Pancreatic exocrine secretion was estimated in 180 normal control patients, free of abdominal and pancreatic disease, aged from 16 to 83 years. Duodenal juice was collected in two 15-min fractions after a single intravenous injection of 1 U/kg secretin + 3 U/kg CCK. Volume, maximal concentration and output of bicarbonate, lipase, phospholipase and chymotrypsin were estimated as well as minimal concentration and output of chloride and calcium. Each parameter was plotted against age, either individually or after separation into two age groups. Volume linearly increased up to the 3rd decade, and thereafter linearly decreased. Bicarbonate secretion paralleled fluid secretion and also decreased after the 3rd decade. The changes in chloride and calcium concentrations were different: concentrations linearly increased after the 3rd decade. Calcium concentration linearly increased with age (p < 0.02) while chloride output was unchanged. The three enzymes that were studied linearly decreased in concentration as well as in output with age from the 3rd decade (p < 0.02). Protein secretion decreased before water and bicarbonate secretion. One can conclude that pancreatic secretion changes in humans with age. Aging alters pancreatic secretion, through a decrease in flow rate, bicarbonate and enzyme secretion while calcium concentration is enhanced. Although not requiring substitutive therapy in the whole population, individual cases of pancreatic exocrine insufficiency might be explained by aging, without malnutrition.
Promotion by albumin of calcium oxalate crystallization with specific formation of the dihydrate form might be protective, because with rapid nucleation of small crystals, the saturation levels fall; thus, larger crystal formation and aggregation with subsequent stone formation may be prevented. We believe that albumin may be an important factor of urine stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.