Problem statement: Time series analysis and forecasting has become a major tool in different applications in hydrology and environmental management fields. Among the most effective approaches for analyzing time series data is the model introduced by Box and Jenkins, ARIMA (Autoregressive Integrated Moving Average). Approach: In this study we used Box-Jenkins methodology to build ARIMA model for monthly rainfall data taken for Amman airport station for the period from 1922-1999 with a total of 936 readings. Results: In this research, ARIMA (1, 0, 0) (0, 1, 1)12 model was developed. This model is used to forecasting the monthly rainfall for the upcoming 10 years to help decision makers establish priorities in terms of water demand management. Conclusion/Recommendations: An intervention time series analysis could be used to forecast the peak values of rainfall data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.