The adsorption of CO2 and CH4 in a mixed-ligand metal-organic framework (MOF) Zn 2(NDC) 2(DPNI) [NDC = 2,6-naphthalenedicarboxylate, DPNI = N, N'-di-(4-pyridyl)-1,4,5,8-naphthalene tetracarboxydiimide] was investigated using volumetric adsorption measurements and grand canonical Monte Carlo (GCMC) simulations. The MOF was synthesized by two routes: first at 80 degrees C for two days with conventional heating, and second at 120 degrees C for 1 h using microwave heating. The two as-synthesized samples exhibit very similar powder X-ray diffraction patterns, but the evacuated samples show differences in nitrogen uptake. From the single-component CO2 and CH4 isotherms, mixture adsorption was predicted using the ideal adsorbed solution theory (IAST). The microwave sample shows a selectivity of approximately 30 for CO2 over CH4, which is among the highest selectivities reported for this separation. The applicability of IAST to this system was demonstrated by performing GCMC simulations for both single-component and mixture adsorption.
Grand canonical Monte Carlo (GCMC) simulations demonstrate that catenation can be beneficial for improving hydrogen storage in metal-organic frameworks at cryogenic temperatures and low pressures but not necessarily at room temperature.
A series of metalloporphyrin dimers were modularly prepared and shown to catalyze the methanolysis of a phosphate triester, yielding rates that are large compared to the rate of the uncatalyzed reaction. Up to 1300-fold rate acceleration can be achieved via a combination of cavity-localized Lewis-acid activation and methoxide-induced methanolysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.