The initial value problem for hyperbolic equationsHilbert space H is considered. The first and second order accuracy difference schemes generated by the integer power of A approximately solving this initial value problem are presented. The stability estimates for the solution of these difference schemes are obtained.
We consider the abstract Cauchy problem for differential equation of the hyperbolic typev″(t)+Av(t)=f(t)(0≤t≤T),v(0)=v0,v′(0)=v′0in an arbitrary Hilbert spaceHwith the selfadjoint positive definite operatorA. The high order of accuracy two-step difference schemes generated by an exact difference scheme or by the Taylor decomposition on the three points for the numerical solutions of this problem are presented. The stability estimates for the solutions of these difference schemes are established. In applications, the stability estimates for the solutions of the high order of accuracy difference schemes of the mixed-type boundary value problems for hyperbolic equations are obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.