Measurements of the thickness of the pre-corneal tear film, pre-lens tear film, post-lens tear film, and the lipid layer on the surface of the tear film are summarized. Spatial and temporal variations in tear film thickness are described. Theoretical predictions of tear film thickness are discussed. Mechanisms involved in the upward drift of the tear film after a blink, and in the formation of dry spots, are considered.
Great strides have recently been made in quantitative measurements of tear film thickness and thinning, mathematical modeling thereof and linking these to sensory perception. This paper summarizes recent progress in these areas and reports on new results. The complete blink cycle is used as a framework that attempts to unify the results that are currently available. Understanding of tear film dynamics is aided by combining information from different imaging methods, including fluorescence, retroillumination and a new high-speed stroboscopic imaging system developed for studying the tear film during the blink cycle. During the downstroke of the blink, lipid is compressed as a thick layer just under the upper lid which is often released as a narrow thick band of lipid at the beginning of the upstroke. “Rippling” of the tear film/air interface due to motion of the tear film over the corneal surface, somewhat like the flow of water in a shallow stream over a rocky streambed, was observed during lid motion and treated theoretically here. New mathematical predictions of tear film osmolarity over the exposed ocular surface and in tear breakup are presented; the latter is closely linked to new in vivo observations. Models include the effects of evaporation, osmotic flow through the cornea and conjunctiva, quenching of fluorescence, tangential flow of aqueous tears and diffusion of tear solutes and fluorescein. These and other combinations of experiment and theory increase our understanding of the fluid dynamics of the tear film and its potential impact on the ocular surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.