The correct approach to analyzing method agreement is discussed. Whether we are considering agreement between two measurements on the same samples (repeatability) or two individuals using identical methodology on identical samples (reproducibility) or comparing two methods, appropriate procedures are described, and worked examples are shown. The correct approaches for both categorical and numerical variables are explained. More complex analyses involving a comparison of more than two pairs of data are mentioned and guidance for these analyses given. Simple formulae for calculating the approximate sample size needed for agreement analysis are also given. Examples of good practice from the reproduction literature are cited, and common errors of methodology are indicated.
Use of a cryoprotective agent is indispensable to prevent injury to human spermatozoa during the cryopreservation process. However, addition of cryoprotective agents to spermatozoa before cooling and their removal after warming may create severe osmotic stress for the cells, resulting in injury. The objective of this study was to test the hypothesis that the degree (or magnitude) of human sperm volume excursion can be used as an independent indicator to evaluate and predict possible osmotic injury to spermatozoa during the addition and removal of cryoprotective agents. Glycerol was used as a model cryoprotective agent in the present study. To test this hypothesis, first the tolerance limits of spermatozoa to swelling in hypo-osmotic solutions (iso-osmotic medium diluted with water) and to shrinkage in hyperosmotic solutions (iso-osmotic medium with sucrose) were determined. Sperm plasma membrane integrity was measured by fluorescent staining, and sperm motility was assessed by computer-assisted semen analysis before, during and after the anisosomotic exposure. The result indicate firstly that motility was much more sensitive to anisosmotic conditions than membrane integrity, and secondly that motility was substantially more sensitive to hypotonic than to hypertonic conditions. Based on the experimental data, osmotic injury as a function of sperm volume excursion (swelling or shrinking) was determined. The second step, using these sperm volume excursion limits and previously measured glycerol and water permeability coefficients of human spermatozoa, was to predict, by computer simulation, the cell osmotic injury caused by different procedures for the addition and removal of glycerol. The predicted sperm injury was confirmed by experiment. Based on this study, an analytical methodology has been developed for predicting optimal protocols to reduce osmotic injury associated with the addition and removal of hypertonic concentrations of glycerol in human spermatozoa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.