Polycyclic aromatic hydrocarbons (PAHs) are hydrocarbons composed of two or more benzene rings, and they are widely found in nature. The degradation of PAHs remains in a dynamic equilibrium, which has suffered from the increasing PAHs emissions under the continuous development of society. Therefore, the environmental pollution is getting increasingly serious. Many scholars have conducted researches on the degradation of PAHs. In this paper, the origin and properties of PAHs are introduced. Besides, the physical, chemical and biological methods for the degradation of PAHs were reviewed. Among them the biodegradation of PAHs has been especially analyzed. Meanwhile, the advantages and disadvantages of each method were described through comparison.
Chlorimuron-ethyl is a typical long-term residual sulfonylurea herbicide, and strategies for its removal have attracted increasing attention. Microbial degradation is considered the most acceptable dissipation method. In this study, we optimized the cultivation conditions (substrate concentration, pH, inoculum concentration, and temperature) of the chlorimuron-ethyl-degrading bacterium Rhodococcus sp. D310-1 using response surface methodology (RSM) to improve the biodegradation efficiency. A maximum biodegradation rate of 88.95 % was obtained. The Andrews model was used to describe the changes in the specific degradation rate as the substrate concentration increased. Chlorimuron-ethyl could be transformed with a maximum specific degradation rate (q max), half-saturation constant (K S), and inhibition constant (K i) of 0.4327 day(-1), 63.50045 mg L(-1), and 156.76666 mg L(-1), respectively. Eight biodegradation products (2-amino-4-chloro-6-methoxypyrimidine, ethyl 2-sulfamoyl benzoate, 2-sulfamoyl benzoic acid, o-benzoic sulfimide, 2-[[(4-chloro-6-methoxy-2-pyrimidinyl) carbamoyl] sulfamoyl] benzoic acid, ethyl 2-carbonyl sulfamoyl benzoate, ethyl 2-benzenesulfonyl isocyanate benzoate, and N,N-2(ethyl formate)benzene sulfonylurea) were identified, and three possible degradation pathways were proposed based on the results of high performance liquid chromatography HPLC, liquid chromatography tandem mass spectroscopy (LC-MS/MS), and Fourier transform infrared spectroscopy (FTIR) analyses and the relevant literature. This systematic study is the first to examine the chlorimuron-ethyl degradation pathways of the genus Rhodococcus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.