Nowadays, the demand for advanced functional materials in transducer technology is growing rapidly. Piezoelectric materials transform mechanical variables (displacement or force) into electrical signals (charge or voltage) and vice versa. They are interesting from both fundamental and application points of view. Ferrooelectrets (also called piezoelectrets) are a relatively young group of piezo-, pyro- and ferroelectric materials. They exhibit ferroic behavior phenomenologically undistinguishable from that of traditional ferroelectrics, although the materials per se are essentially non-polar space-charge electrets with artificial macroscopic dipoles (i.e., internally charged cavities). A lot of work has been done on ferroelectrets and their applications up to now. In this paper, we review and discuss mostly the work done at University of Potsdam on the research and development of ferroelectrets. We will, however, also mention important results from other teams, and prospect the challenges and future progress trend of the field of ferroelectret research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.