Abstract. High dispersion spectra (R ∼ > 40 000) for a quite large number of stars at the main sequence turn-off and at the base of the giant branch in NGC 6397 and NGC 6752 were obtained with the UVES on Kueyen (VLT UT2). The [Fe/H] values we found are −2.03 ± 0.02 ± 0.04 and −1.42 ± 0.02 ± 0.04 for NGC 6397 and NGC 6752 respectively, where the first error bars refer to internal and the second ones to systematic errors (within the abundance scale defined by our analysis of 25 subdwarfs with good Hipparcos parallaxes). In both clusters the [Fe/H]'s obtained for TO-stars agree perfectly (within a few percent) with that obtained for stars at the base of the RGB. The [O/Fe] = 0.21 ± 0.05 value we obtain for NGC 6397 is quite low, but it agrees with previous results obtained for giants in this cluster. Moreover, the star-to-star scatter in both O and Fe is very small, indicating that this small mass cluster is chemically very homogenous. On the other hand, our results show clearly and for the first time that the O-Na anticorrelation (up to now seen only for stars on the red giant branches of globular clusters) is present among unevolved stars in the globular cluster NGC 6752, a more massive cluster than NGC 6397. A similar anticorrelation is present also for Mg and Al, and C and N. It is very difficult to explain the observed Na-O, and Mg-Al anticorrelation in NGC 6752 stars by a deep mixing scenario; we think it requires some non internal mechanism.
We present a high resolution (R ∼ 43 000) abundance analysis of a total of nine stars in three of the five globular clusters associated with the nearby Fornax dwarf spheroidal galaxy. These three clusters (1, 2 and 3) trace the oldest, most metal-poor stellar populations in Fornax. We determine abundances of O, Mg, Ca, Ti, Cr, Mn, Fe, Ni, Zn, Y, Ba, Nd and Eu in most of these stars, and for some stars also Mn and La. We demonstrate that classical indirect methods (isochrone fitting and integrated spectra) of metallicity determination lead to values of [Fe/H] which are 0.3 to 0.5 dex too high, and that this is primarily due to the underlying reference calibration typically used by these studies. We show that Cluster 1, with [Fe /H] = −2.5, now holds the record for the lowest metallicity globular cluster. We also measure an over-abundance of Eu in Cluster 3 stars that has only been previously detected in a subgroup of stars in M 15. We find that the Fornax globular cluster properties are a global match to what is found in their Galactic counterparts; including deep mixing abundance patterns in two stars. We conclude that at the epoch of formation of globular clusters both the Milky Way and the Fornax dwarf spheroidal galaxy shared the same initial conditions, presumably pre-enriched by the same processes, with identical nucleosynthesis patterns.
We present the high-resolution spectroscopic study of five −3.9 ≤ [Fe/H] ≤ −2.5 stars in the Local Group dwarf spheroidal, Sculptor, thereby doubling the number of stars with comparable observations in this metallicity range. We carry out a detailed analysis of the chemical abundances of α, iron peak, and light and heavy elements, and draw comparisons with the Milky Way halo and the ultra-faint dwarf stellar populations. We show that the bulk of the Sculptor metal-poor stars follow the same trends in abundance ratios versus metallicity as the Milky Way stars. This suggests similar early conditions of star formation and a high degree of homogeneity of the interstellar medium. We find an outlier to this main regime, which seems to miss the products of the most massive of the Type II supernovae. In addition to its help in refining galaxy formation models, this star provides clues to the production of cobalt and zinc. Two of our sample stars have low odd-to-even barium isotope abundance ratios, suggestive of a fair proportion of s-process. We discuss the implication for the nucleosynthetic origin of the neutron capture elements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.