Red giants are evolved stars that have exhausted the supply of hydrogen in their cores and instead burn hydrogen in a surrounding shell 1,2 . Once a red giant is sufficiently evolved, the helium in the core also undergoes fusion 3 . Outstanding issues in our understanding of red giants include uncertainties in the amount of mass lost at the surface before helium ignition and the amount of internal mixing from rotation and other processes 4 . Progress is hampered by our inability to distinguish between red giants burning helium in the core and those still only burning hydrogen in a shell. Asteroseismology offers a way forward, being a powerful tool for probing the internal structures of stars using their natural oscillation frequencies 5 . Here we report observations of gravity-mode period spacings in red giants 6 that permit a distinction between evolutionary stages to be made. We use high-precision photometry obtained by the Kepler spacecraft over more than a year to measure oscillations in several hundred red giants. We find many stars whose dipole modes show sequences with approximately regular period spacings. These stars fall into two clear groups, allowing us to distinguish unambiguously between hydrogen-shell-burning stars (period spacing mostly 50 seconds) and those that are also burning helium (period spacing 100 to 300 seconds).Oscillations in red giants, like those in the Sun, are thought to be excited by near-surface convection. The observed oscillation spectra are indeed remarkably Sun-like, with a broad range of radial and nonradial modes in a characteristic comb pattern [7][8][9][10][11]
Context. The space mission Kepler provides us with long and uninterrupted photometric time series of red giants. We are now able to probe the rotational behaviour in their deep interiors using the observations of mixed modes. Aims. We aim to measure the rotational splittings in red giants and to derive scaling relations for rotation related to seismic and fundamental stellar parameters. Methods. We have developed a dedicated method for automated measurements of the rotational splittings in a large number of red giants. Ensemble asteroseismology, namely the examination of a large number of red giants at different stages of their evolution, allows us to derive global information on stellar evolution. Results. We have measured rotational splittings in a sample of about 300 red giants. We have also shown that these splittings are dominated by the core rotation. Under the assumption that a linear analysis can provide the rotational splitting, we observe a small increase of the core rotation of stars ascending the red giant branch. Alternatively, an important slow down is observed for red-clump stars compared to the red giant branch. We also show that, at fixed stellar radius, the specific angular momentum increases with increasing stellar mass. Conclusions. Ensemble asteroseismology indicates what has been indirectly suspected for a while: our interpretation of the observed rotational splittings leads to the conclusion that the mean core rotation significantly slows down during the red giant phase. The slowdown occurs in the last stages of the red giant branch. This spinning down explains, for instance, the long rotation periods measured in white dwarfs.
When the core hydrogen is exhausted during stellar evolution, the central region of a star contracts and the outer envelope expands and cools, giving rise to a red giant. Convection takes place over much of the star's radius. Conservation of angular momentum requires that the cores of these stars rotate faster than their envelopes; indirect evidence supports this 1,2 . Information about the angular-momentum distribution is inaccessible to direct observations, but it can be extracted from the effect of rotation on oscillation modes that probe the stellar interior. Here we report an increasing rotation rate from the surface of the star to the stellar core in the interiors of red giants, obtained using the rotational frequency splitting of recently detected 'mixed modes' 3,4 . By comparison with theoretical stellar models, we conclude that the core must rotate at least ten times faster than the surface. This observational result confirms the theoretical prediction of a steep gradient in the rotation profile towards the deep stellar interior 1,5,6 .The asteroseismic approach to studying stellar interiors exploits information from oscillation modes of different radial order n and angular degree l, which propagate in cavities extending at different depths 7 . Stellar rotation lifts the degeneracy of non-radial modes, producing a multiplet of (2l 1 1) frequency peaks in the power spectrum for each mode. The frequency separation between two mode components of a multiplet is related to the angular velocity and to the properties of the mode in its propagation region. More information on the exploitation of rotational splitting of modes may be found in the Supplementary Information. An important new tool comes from mixed modes that were recently identified in red giants 3,4 . Stochastically excited solar-like oscillations in evolved G and K giant stars 8 have been well studied in terms of theory [9][10][11][12] , and the main results are consistent with recent observations from space-based photometry 13,14 . Whereas pressure modes are completely trapped in the outer acoustic cavity, mixed modes also probe the central regions and carry additional information from the core region, which is probed by gravity modes. Mixed dipole modes (l 5 1) appear in the Fourier power spectrum as dense clusters of modes around those that are best trapped in the acoustic cavity. These clusters, the components of which contain varying amounts of influence from pressure and gravity modes, are referred to as 'dipole forests'.We present the Fourier spectra of the brightness variations of stars KIC 8366239 (Fig. 1a), KIC 5356201 ( Supplementary Fig. 3a) and KIC 12008916 ( Supplementary Fig. 5a), derived from observations with the Kepler spacecraft. The three spectra show split modes, the spherical degree of which we identify as l 5 1. These detected multiplets cannot have been caused by finite mode lifetime effects from mode damping, because that would not lead to a consistent multiplet appearance over several orders such as that shown in Fig. 1. ...
Context. There are now more than 22 months of long-cadence data available for thousands of red giants observed with the Kepler space mission. Consequently, we are able to clearly resolve fine details in their oscillation spectra and see many components of the mixed modes that probe the stellar core. Aims. We report for the first time a parametric fit to the pattern of the = 1 mixed modes in red giants, which is a powerful tool to identify gravity-dominated mixed modes. With these modes, which share the characteristics of pressure and gravity modes, we are able to probe directly the helium core and the surrounding shell where hydrogen is burning. Methods. We propose two ways for describing the so-called mode bumping that affects the frequencies of the mixed modes. Firstly, a phenomenological approach is used to describe the main features of the mode bumping. Alternatively, a quasi-asymptotic mixed-mode relation provides a powerful link between seismic observations and the stellar interior structure. We used period échelle diagrams to emphasize the detection of the gravity-dominated mixed modes. Results. The asymptotic relation for mixed modes is confirmed. It allows us to measure the gravity-mode period spacings in more than two hundred red giant stars. The identification of the gravity-dominated mixed modes allows us to complete the identification of all major peaks in a red giant oscillation spectrum, with significant consequences for the true identification of = 3 modes, of = 2 mixed modes, for the mode widths and amplitudes, and for the = 1 rotational splittings. Conclusions. The accurate measurement of the gravity-mode period spacing provides an effective probe of the inner, g-mode cavity. The derived value of the coupling coefficient between the cavities is different for red giant branch and clump stars. This provides a probe of the hydrogen-shell burning region that surrounds the helium core. Core contraction as red giants ascend the red giant branch can be explored using the variation of the gravity-mode spacing as a function of the mean large separation.
Kepler ultra-high precision photometry of long and continuous observations provides a unique dataset in which surface rotation and variability can be studied for thousands of stars. Because many of these old field stars also have independently measured asteroseismic ages, measurements of rotation and activity are particularly interesting in the context of age-rotation-activity relations. In particular, age-rotation relations generally lack good calibrators at old ages, a problem that this Kepler sample of old-field stars is uniquely suited to address. We study the surface rotation and photometric magnetic activity of a subset of 540 solar-like stars on the mainsequence and the subgiant branch for which stellar pulsations have been measured. The rotation period was determined by comparing the results from two different analysis methods: i) the projection onto the frequency domain of the time-period analysis, and ii) the autocorrelation function of the light curves. Reliable surface rotation rates were then extracted by comparing the results from two different sets of calibrated data and from the two complementary analyses. General photometric levels of magnetic activity in this sample of stars were also extracted by using a photometric activity index, which takes into account the rotation period of the stars. We report rotation periods for 310 out of 540 targets (excluding known binaries and candidate planet-host stars); our measurements span a range of 1 to 100 days. The photometric magnetic activity levels of these stars were computed, and for 61.5% of the dwarfs, this level is similar to the range, from minimum to maximum, of the solar magnetic activity. We demonstrate that hot dwarfs, cool dwarfs, and subgiants have very different rotation-age relationships, highlighting the importance of separating out distinct populations when interpreting stellar rotation periods. Our sample of cool dwarf stars with age and metallicity data of the highest quality is consistent with gyrochronology relations reported in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.