The Simons Observatory (SO) is a new cosmic microwave background experiment being built on Cerro Toco in Chile, due to begin observations in the early 2020s. We describe the scientific goals of the experiment, motivate the design, and forecast its performance. SO will measure the temperature and polarization anisotropy of the cosmic microwave background in six frequency bands centered at: 27, 39, 93, 145, 225 and 280 GHz. The initial configuration of SO will have three small-aperture 0.5-m telescopes and one large-aperture 6-m telescope, with a total of 60,000 cryogenic bolometers. Our key science goals are to characterize the primordial perturbations, measure the number of relativistic species and the mass of neutrinos, test for deviations from a cosmological constant, improve our understanding of galaxy evolution, and constrain the duration of reionization. The small aperture telescopes will target the largest angular scales observable from Chile, mapping ≈ 10% of the sky to a white noise level of 2 µK-arcmin in combined 93 and 145 GHz bands, to measure the primordial tensor-to-scalar ratio, r, at a target level of σ(r) = 0.003. The large aperture telescope will map ≈ 40% of the sky at arcminute angular resolution to an expected white noise level of 6 µK-arcmin in combined 93 and 145 GHz bands, overlapping with the majority of the Large Synoptic Survey Telescope sky region and partially with the Dark Energy Spectroscopic Instrument. With up to an order of magnitude lower polarization noise than maps from the Planck satellite, the high-resolution sky maps will constrain cosmological parameters derived from the damping tail, gravitational lensing of the microwave background, the primordial bispectrum, and the thermal and kinematic Sunyaev-Zel'dovich effects, and will aid in delensing the large-angle polarization signal to measure the tensorto-scalar ratio. The survey will also provide a legacy catalog of 16,000 galaxy clusters and more than 20,000 extragalactic sources a .
We present the first paper in a series detailing the results of 13CO observations of a ∼1 deg2 region of the giant molecular cloud (GMC) complex associated with the H ii region RCW 106. The 13CO observations are also the first stage of a multimolecular line study of the same region. These observations were amongst the first made using the new on‐the‐fly mapping capability of the Australia Telescope National Facility Mopra Telescope. In the configuration used, the instrument provided a full width at half‐maximum (FWHM) beam size of 33 arcsec and a velocity resolution of 0.17 km s−1. The gas emission takes the form of a string of knots, oriented along an axis that extends from the north‐west (NW) to the south‐east (SE) of the field of the observations, and which is surrounded by a more extended, diffuse emission. We analyse the 2D integrated 13CO emission using the clumpfind algorithm and identify 61 clumps. We compare the gas data in the GMC with the dust data provided by 21‐μm Midcourse Space Experiment (MSX) and 1.2‐mm Swedish European Southern Observatory Submillimetre Telescope (SEST) images that we both regridded to the cell spacing of the Mopra data and smoothed to the same resolution. The 13CO emission is more diffuse and extended than the dust emission revealed at the latter two wavebands, which both have a much higher contrast between the peaks and the extended emission. From comparison of their centre positions, we find that only ∼50 per cent of the 13CO clump fits to the data are associated with any dust clumps. Using the clump fits, the total local thermodynamic equilibrium gas mass above the 3σ level measured from the molecular data is 2.7 × 105 M⊙, whereas that measured from the smoothed 1.2‐mm SEST dust data is 2.2 × 105 M⊙.
We present results from the Austral Winter 2003 observing campaign of SPARO, a 450 micron polarimeter used with a two-meter telescope at South Pole. We mapped large-scale magnetic fields in four Giant Molecular Clouds (GMCs) in the Galactic disk: NGC 6334, the Carina Nebula, G333.6-0.2 and G331.5-0.1. We find a statistically significant correlation of the inferred field directions with the orientation of the Galactic plane. Specifically, three of the four GMCs (NGC 6334 is the exception) have mean field directions that are within 15 degrees of the plane. The simplest interpretation is that the field direction tends to be preserved during the process of GMC formation. We have also carried out an analysis of published optical polarimetry data. For the closest of the SPARO GMCs, NGC 6334, we can compare the field direction in the cloud as measured by SPARO with the field direction in a larger region surrounding the cloud, as determined from optical polarimetry. For purposes of comparison, we also use optical polarimetry to determine field directions for other regions of similar size and distance. Overall, the results from this optical polarimetry analysis are consistent with our suggestion that field direction tends to be preserved during GMC formation. Finally, we compare the disorder in our magnetic field maps with the disorder seen in magnetic field maps derived from MHD turbulence simulations. We conclude from these comparisons that the magnetic energy density in our clouds is comparable to the turbulent energy density.Comment: Submitted to Astrophys. J. (one color figure
The Simons Observatory (SO) will make precision temperature and polarization measurements of the cosmic microwave background (CMB) over angular scales between 1 arcminute and tens of degrees using over 60,000 detectors and sampling frequencies between 27 and 270 GHz. SO will consist of a six-meteraperture telescope coupled to over 30,000 detectors and an array of half-meter aperture refractive cameras, coupled to an additional 30,000+ detectors. The unique combination of large and small apertures in a single CMB observatory will allow us to sample a wide range of angular scales over a common survey area while providing an important stepping stone towards the realization of CMB-Stage IV. CMB-Stage IV is a proposed project that will combine and expand on existing facilities in Chile and Antarctica to reach the 500,000 detectors required for CMB-Stage IV's science objectives. SO and CMB-Stage IV will measure fundamental cosmological parameters of our universe, constrain primordial fluctuations, find high redshift clusters via the Sunyaev-Zeldovich effect, constrain properties of neutrinos, and trace the density and velocity of the matter in the universe over cosmic time. The complex set of technical and science requirements for SO has led to innovative instrumentation solutions which we will discuss. For instance, the SO large aperture telescope will couple to a cryogenic receiver that is 2.4 m in diameter and 2.4 m long. We will give an overview of the drivers for and designs of the SO telescopes and cameras as well as the current status of the project. We will also discuss the current status of CMB-Stage IV and important next steps in the project's development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.