A one-step functionalization process has been developed for oxide-free channels of field effect transistor structures, enabling a self-selective grafting of receptor molecules on the device active area, while protecting the nonactive part from nonspecific attachment of target molecules. Characterization of the self-organized chemical process is performed on both Si(100) and SiO(2) surfaces by infrared and X-ray photoelectron spectroscopy, atomic force microscopy, and electrical measurements. This selective functionalization leads to structures with better chemical stability, reproducibility, and reliability than current SiO(2)-based devices using silane molecules.
The presence of mobile Na+ and K+ ions in biological solutions often lead to instabilities in metal-oxide-semiconductor devices and is therefore an important consideration in developing sensor technologies. Permanent hysteresis is observed on silicon-on-insulator field-effect-transistors based sensors after exposure to Na+-based buffer solutions but not after exposure to K+-based solutions. This behavior is attributed to the difference in mobilities of the ions in silicon dioxide. Mobile charge measurements confirm that ions can be transferred from the solution into the oxide. Self-assembled monolayers are shown to provide protection against ion diffusion, preventing permanent hysteresis of the sensors after exposure to solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.