The Central Institute of Aviation Motors (CIAM) has been engaged in the development of methods and technologies extending the range of stable operation for GTE axial compressors on the basis of systematic experimental and theoretical investigations of processes before and after flow disturbances for many years. The general sources of experimental data were stage models of various types. They are first supersonic stages with 0.3–0.45 hub ratio and subsonic stages with 0.75 hub ratio, as well as high-loaded stages with low aspect ratio. As a result of these investigations, a structural configuration of the casing treatment (CT) was designed to prevent local flow separation on flow passage surfaces of a compressor stage. The CT structure includes the following components: - Slotted spacer installed above the inlet rotor section; - Attached ring covering the slotted spacer. An approximate procedure for selecting the optimal CT geometric parameters and their interrelations was developed for CT designing. Using this procedure, special investigations were completed and detected the CT effects on operation of the axial compressor. These effects are: - Effect of air back and forward leakage through slots between the blade tips and the inlet rotor section; - Effect of stall deceleration in the stage flow passage; - Pulsation damping at the stage tip when flowing around the CT slotted spacer. Based on this methodology, CT prototypes were developed and tested in various single-stage and multi-stage compressors. As an example of CT advantages, we can show test results for a three-stage low-pressure compressor (LPC) designed by CIAM. The LPC in take-off conditions provides the following design parameters: - Pressure ratio: 3.4; - Corrected tip speed: 418 m/s; - Stall margin: 20% … 21% within 0.5–1.0 corrected RPM. According to experimental investigations, the use of CT results in a considerable increase in LPC stall margin without losses in other design parameters. Additionally, the results of 3D viscous flow calculation are shown for compressor performance analysis.
It is ascertained that optimization of bladed rows clocking positions is an effective tool for control of bladed rows unsteady interaction in a multistage turbo machine and could be used equally in refinement and in compressor design stages [1–3]. Up to now the clocking effect issue of highly loaded rotors in compressor stages was not investigated due to growing design complexity of the experimental facility. The issue concerning tip clearances value influence on rotor and stator clocking effects was not studied as well. In the frames of this work a two stage compressor (HPC2 with the designed pressure ratio π* = 3.7 [4]) with a unique design was developed to investigate influence of tip clearance values on rotor and stator clocking effect. In order to realize the clocking effect the HPC2 compressor has the following parameters: numbers of stator blades are identical for all stators and equal to ZIGV = ZS1 = ZS2 = 68; number of R1 blades is two times less than of R2: ZR2 = 56, ZR1 = 28. This work studies HPC2 compressor performances at 3 R1 and R2 tip clearances — dtip = 0.5mm – nominal clearance, 0.75mm, and 1.0 mm – increased clearance. Clocking effects of stators and rotors are tested at 0.5mm and 0.75mm tip clearances for two values of corrected rotational speeds — n = 0.7 and 0.88. As shown, variations in max. efficiency from maximum to minimum when changing the clocking position both the stator and the rotor reach Δη*ad≈0.008÷0.012 at dtip = 0.5mm or Δη*ad≈0.007÷0.008 at dtip = 0.75mm. For more detailed analysis of the tip clearance influence on rotor and stator clocking effect a mathematical model of HPC2 was developed on base of through flow 3D viscous unsteady flow computations in the HPC2 compressor rows [3–4]. In full unsteady statement the calculation domain includes the following number of blade rows: IGV = 2, R1 = 1, S1 = 2, R2 = 2; S2 = 2.
One of the vital tasks related to the improvement of the efficiency of turbomachines is an increase in their operating altitude by reducing the influence of Reynolds numbers, Re, on the turbomachine parameters. Therefore, the results presented in this work on the effect of Re on parameters of an axial compressor composed of two high-loaded stages are attractive both from scientific and practical points of view. This work presents the results of experimental investigations of Re effect on gas-dynamic characteristics of a highly-loaded two-stage compressor (HPC-2), simulating the first two stages of the High Pressure Compressor, (HPC), for an advanced engine. The compressor has the following key gasdynamic parameters: – corrected mass flow rate: 31.8 kg/s – total pressure ratio: 3.7 – coefficient of aerodynamic load: 0.421 The experimental study of HPC-2 is carried out at the Central Institute of Aviation Motors, (CIAM), C-3 test facility. Reynolds number is changed by decreasing pressure at the inlet from 1 bar to 0.2 bar and changing the clocking position of stator rows at optimal points of performance for two rotational speeds, 0.7 and 0.88. Tests of HPC-2 compressor show that a stepwise decrease of the inlet pressure from 1.0 0.7, 0.4 down to 0.2 bar (a decrease in Re from 1785000 to 294000) leads to a smooth decrease in maximum compressor efficiency by 1% and a shift of compressor characteristics towards lower air flow rates (by 2%). The experimental studies of compressors for present-day engines show that unsteady processes play a key role in compressor efficiency and stability. One way to control unsteady flow in compressors is clocking effect. Recently clocking of stators and rotors has been investigated in details using the HPC-2 two-stage compressor (total pressure ratio 3.7) in H = 0; M = 0 conditions. The effect of Reynolds number on compressor characteristics is studied in this work for the HPC-2 compressor while also investigating stator clocking effect. The rotor clocking effect is not studied. Tests of HPC-2 compressor show that a decrease in the inlet pressure and changes in Re results in a stronger clocking effect, which is 0.5% in terms of efficiency under atmospheric conditions at the inlet and reaches 1% with a decrease in the inlet pressure from atmospheric pressure down to 0.2 bar.
The paper presents the results of computing aerodynamic properties of the CRTF2A counter-rotating cowled fan developed as part of the European VITAL program. To achieve these results, we used the following software packages: NUMECA FINE TURBO, ANSYS CFX and CIAMs own 3D--IMP--MULTI hydrocode. We use the RANS approach to model turbulent flows. We performed a three-dimensional computation, completing Reynolds-averaged Navier --- Stokes equations by various turbulence models for the following relative angular frequency modes: n = 1 and 0.9. We used the following turbulence models available in the software packages: k--ε (ANSYS CFX, 3D--IMP--MULTI), k--ε (ANSYS CFX, NUMECA FINE TURBO, 3D--IMP--MULTI), SST (NUMECA FINE TURBO, ANSYS CFX, 3D--IMP--MULTI). We plotted head characteristics for each software package and determined the main differences. We plotted adiabatic efficiency and total pressure ratios as functions of height for the first and second rotors at the maximum efficiency points for both modes in the ANSYS CFX, NUMECA FINE TURBO and 3D--IMP--MULTI software packages
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.