Compounds with honeycomb structures occupied by strong spin orbit coupled (SOC) moments are considered to be candidate Kitaev quantum spin liquids. Here we present the first example of Os on a honeycomb structure, Li2.15(3)Os0.85(3)O3 (C2/c, a = 5.09 Å, b = 8.81 Å, c = 9.83 Å, β = 99.3°). Neutron diffraction shows large site disorder in the honeycomb layer and X-ray absorption spectroscopy indicates a valence state of Os (4.7 ± 0.2), consistent with the nominal concentration. We observe a transport band gap of Δ = 243 ± 23 meV, a large van Vleck susceptibility, and an effective moment of 0.85 μB, much lower than expected from 70% Os(+5). No evidence of long range order is found above 0.10 K but a spin glass-like peak in ac-susceptibility is observed at 0.5 K. The specific heat displays an impurity spin contribution in addition to a power law ∝T(0.63±0.06). Applied density functional theory (DFT) leads to a reduced moment, suggesting incipient itineracy of the valence electrons, and finding evidence that Li over stoichiometry leads to Os(4+)−Os(5+) mixed valence. This local picture is discussed in light of the site disorder and a possible underlying quantum spin liquid state.
Weyl fermions scattering from a random Coulomb potential are predicted to exhibit resistivity versus temperature ∝ in a single particle model. Here we show that, in closedenvironment-grown polycrystalline samples of Y2Ir2O7, = over four orders of magnitude in . While the measured prefactor, , is obtained from the model using reasonable materials parameters, the behavior extends far beyond the model's range of applicability. In particular, the behavior extends into the low-temperature, high-resistivity region where the Ioffe-Regel parameter, « 2 . Strong on-site Coulomb correlations, instrumental for predicting a Weyl semimetal state in Y2Ir2O7, are the possible origin of such "bad" Weyl semimetal behavior.
The plateau at 1=3 of the saturation magnetization M s in the metamagnet CeSb is accompanied by a state of ferromagnetic layers of spins in an up-up-down sequence. We measured M and the specific heat C in the plateau, spin wave analyses of which reveal two distinct branches of excitations. Those with ΔS z ¼ 1 as measured by M, coexist with a much larger population of ΔS z ¼ 0 excitations measured by C but invisible to M. The large density of ΔS z ¼ 0 excitations, their energy gap, and their seeming lack of interaction with ΔS z ¼ 1 excitations suggest an analogy with astrophysical dark matter. Additionally, in the middle of the plateau three sharp jumps in MðHÞ are seen, the size of which, 0.15%M s , is consistent with fractional quantization of magnetization per site in the down-spin layers.
Osmium-containing oxides are rare due to the difficulty in stabilizing complex structures with a fixed stoichiometry and metastability of the phases. Bismuth-substituted thallium osmate pyrochlore samples, Tl2–x Bi x Os2O7–y , were synthesized using solid-state reactions where the solubility limit was found to be approximately x = 1.4. Members of this solid solution were characterized by their structural, electronic, magnetic, and thermal properties to understand the influence of Bi3+ substitution on the ground state. The Os-containing pyrochlores crystallize in the ideal cubic pyrochlore structure (Fd m), and the lattice parameter a was found to slightly increase as a function of Bi content. A possible interplay between structure and cation valence states was explored using both neutron powder diffraction and X-ray absorption spectroscopy, suggesting that a combination of Os4+/Os5+ and Tl1+/Tl3+ mixed valency throughout the solid solution allows for the stabilization of the pyrochlore structure. The system is metallic for the entire solid solution and predominantly exhibits temperature-independent paramagnetism. Specific heat measurements show an enhanced Sommerfeld coefficient, a possible flat-band signature. This system gave insight into the bonding preferences of Os, indicating a dependence on high oxidation states and mixed valence for the stability of complex structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.