We present intermediate-band solar cells manufactured using quantum dot technology that show for the first time the production of photocurrent when two sub-band-gap energy photons are absorbed simultaneously. One photon produces an optical transition from the intermediate-band to the conduction band while the second pumps an electron from the valence band to the intermediate-band. The detection of this two-photon absorption process is essential to verify the principles of operation of the intermediate-band solar cell. The phenomenon is the cornerstone physical principle that ultimately allows the production of photocurrent in a solar cell by below band gap photon absorption, without degradation of its output voltage.
Intermediate band solar cells (IBSCs) fabricated to date from In(Ga)As/GaAs quantum dot arrays (QD-IBSC) exhibit a quantum efficiency (QE) that extends to below bandgap energies. However, the production of sub-bandgap photocurrent relies often on the thermal and/or tunneling escape of carriers from the QDs, which is incompatible with preservation of the output voltage. In this work, we test the effectiveness of introducing a thick GaAs spacer in addition to an InAlGaAs strain relief layer (SRL) over the QDs to reduce carrier escape. From an analysis of the QE at different temperatures, it is concluded that escape via tunneling can be completely blocked under short-circuit conditions, and that carriers confined in QDs with an InAlGaAs SRL exhibit a thermal escape activation energy over 100 meV larger than in the case of InAs QDs capped only with GaAs.
Keywords: Solar cell Quantum dots Intermediate band Recombination Concentrated lightThe intermediate band solar cell (IBSC) is based on a novel photovoltaic concept and has a limiting efficiency of 63.2%, which compares favorably with the 40.7% efficiency of a conventional, single junction solar cell. It is characterized by a material hosting a collection of energy levels within its bandgap, allowing the cell to exploit photons with sub-bandgap energies in a two-step absorption process, thus improving the utilization of the solar spectrum. However, these intermediate levels are often regarded as an inherent source of supplementary recombination, although this harmful effect can in theory be counteracted by the use of concentrated light. We present here a novel, low-temperature characterization technique using concentrated light that reveals how the initially enhanced recombination in the IBSC is reduced so that its open-circuit voltage is completely recovered and reaches that of a conventional solar cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.