Recent experiments at the University of Maryland using photoemission from a dispenser cathode have yielded some interesting results regarding the effects of the area of emission and of the ratio between the pulse length and the gap transit time on the amount of current that may be drawn from an electron gun before a virtual cathode forms. The experiments show that a much higher current density may be drawn from a short pulse or limited emitter area than is anticipated by the Child-Langmuir limiting current. There is also evidence that the current may be increased even after virtual cathode formation, which leads a distinction between a limiting current density and a current density critical for virtual cathode formation. The experiments have also yielded some interesting results on the longitudinal structure of the current pulse passed through the anode. Some empirical and theoretical scaling laws regarding the formation of virtual cathodes in an electron gun will be presented. This work was motivated by the needs of the University of Maryland Electron Ring ͑UMER͒ ͓P. G. O'Shea, M. Reiser, R. A. Kishek et al., Nucl. Instrum. Methods Phys. Res. A 464, 646 ͑2001͔͒ where the goal is to generate pulses that are well-localized in time and space.
A free-electron laser consists of an electron beam propagating through a periodic magnetic field. Today such lasers are used for research in materials science, chemical technology, biophysical science, medical applications, surface studies, and solid-state physics. Free-electron lasers with higher average power and shorter wavelengths are under development. Future applications range from industrial processing of materials to light sources for soft and hard x-rays.
BackgroundThe beneficial outcomes of oral anticoagulation therapy are dependent upon achieving and maintaining an optimal INR therapeutic range. There is growing evidence that better outcomes are achieved when anticoagulation is managed by a pharmacist with expertise in anticoagulation management rather than usual care by family physicians. This study compared a pharmacist managed anticoagulation program (PC) to usual physician care (UC) in a family medicine clinic.MethodsA retrospective cohort study was carried out in a family medicine clinic which included a clinical pharmacist. In 2006, the pharmacist assumed anticoagulation management. For a 17-month period, the PC group (n = 112) of patients on warfarin were compared to the UC patients (n = 81) for a similar period prior to 2006. The primary outcome was the percentage of time patients' INR was in the therapeutic range (TTR). Secondary outcomes were the percentage of time in therapeutic range within ± 0.3 units of the recommended range (expanded TTR) and percentage of time the INR was >5.0 or <1.5.ResultsThe baseline characteristics were similar between the groups. Fifty-five percent of the PC group was male with a mean age of 67 years; 51% of the UC group was male with a mean age of 71 years. The most common indications for warfarin in both groups were atrial fibrillation, mechanical heart valves and deep vein thrombosis. The TTR was 73% for PC and 65% for UC (p < 0.0001). The expanded TTR for PC was 91% and 85% for UC (p < 0.0001). The percentage of time INR values were <1.5 was 0.7% for PC patients and 1.9% for UC patients (p < 0.0001), and >5 were 0.3% for PC patients and 0.1% for UC (p < 0.0001).ConclusionThe pharmacist-managed anticoagulation program within a family practice clinic compared to usual care by the physicians achieved significantly better INR control as measured by the percentage of time patients' INR values were kept in both the therapeutic and expanded range. Based on the results of this study, a collaborative family practice clinic using pharmacists and physicians may be an effective model for anticoagulation management with these results verified in future prospective randomized studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.