SUMMARYSilica and alkali metals in wheat straw limit its use for bioenergy and gasification. Slag deposits occur via the eutectic melting of SiO 2 with K 2 O, trapping chlorides at surfaces and causing corrosion. A minimum melting point of 950 C is desirable, corresponding to SiO 2 :K 2 O of about 3:1. Mild chemical treatments were used to reduce Si, K, and Cl, while varying temperature, concentration, %-solids, and time. Dilute acid was more effective at removing K and Cl, while dilute alkali was more effective for Si.Reduction of minerals in this manner may prove economical for increasing utilization of the straw for combustion or gasification.
SUMMARYAn experiment was carried out over a 5-year period on a grass/clover sward at North Wyke to compare three methods of experimental management—individually grazed plots, communally grazed plots and cutting with removal of herbage. Responses to phosphate and potash fertilizers under each management were measured.P fertilizer increased grass yields in the first 4 years and decreased clover yields in the last 2. In almost all respects cut and grazed sward responded similarly to P. Fertilizer K had no effect on grass yield but markedly increased clover yield and raised herbage K content. Grazed swards developed a higher herbage K content than cut swards, and K fertilizer increased it more in the fourth and fifth years on the individually grazed than on the communally grazed plots. Thus communal grazing resulted in appreciable transfer of K from plot to plot in animal returns.It is concluded that whilst cutting management may be used for short-term experiments, its use in long-term experiments gives different results from grazing. Communal grazing can lead to the transfer of N and K effects from plot to plot, so that plots must be grazed individually except perhaps where P is the only variable nutrient.
SUMMARYIn this paper, we describe ongoing efforts to solve challenges to using straw for bioenergy and bioproducts. Among these, silica in straw forms a low-melting eutectic with potassium, causing slag deposits, and chlorides cause corrosion beneath the deposits. Straw consists principally of stems, leaves, sheaths, nodes, awns, and chaff. Leaves and sheaths are higher in silica, while chaff, leaves and nodes are the primary source of fines. Our approach to reducing silica is to selectively harvest the straw stems using an in-field physical separation, leaving the remaining components in the field to build soil organic matter and contribute soil nutrients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.