Twenty ewes of mixed breeds were randomly assigned in equal numbers to one of four groups in a 2 x 2 factorial design. The factors were x-irradiation to destroy ovarian follicles or sham irradiation and the administration of estradiol-containing or empty (placebo) implants. Surgery for irradiation was performed on Day 8 of the cycle. Blood samples were withdrawn from jugular catheters at 1.5-h intervals from Day 10 to Day 17. Luteolysis was not observed by Day 17 in 4 of 5 placebo-treated ewes after destruction of ovarian follicles. Luteolysis was observed in 4 of 5 ewes of the sham-irradiated, placebo-treated group and in all ewes that received estradiol whether or not ovarian follicles had been destroyed. The longest (p less than 0.07) interval between peaks of 13,14-dihydro-15-keto-prostaglandin F2 alpha (PGFM) was observed in the x-irradiated, placebo-treated group, whereas the administration of estradiol reduced (p less than 0.01) the interval between PGFM peaks. These findings indicate that a short interpulse interval in the secretion of prostaglandin F2 alpha (PGF2 alpha) is associated with luteolysis. It is possible that the reduced interpulse interval was either an effect of estradiol that caused luteolysis or a secondary event resulting from luteolysis. The administration of estradiol decreased (p less than 0.05) the number of episodes of oxytocin secretion during luteolysis and increased (p less than 0.01) the interval between episodes.(ABSTRACT TRUNCATED AT 250 WORDS)
Summary
Serum samples were collected from 10 healthy geldings every 4 h for three consecutive days and the triiodothyronine (T3) and thyroxine (T4) concentrations determined by radioimmunoassay. There were significant differences in the hormone concentrations related to time. The mean (± sd) T3 concentration peaked around 08.00 h at a level (54.06 ± 14.02 ng/dl) significantly (P<.001) higher than the lowest concentration (38.71 ± 10.81 ng/dl) around midnight. Although the highest mean T3 level was 08.00 h, this value was not significantly different from the noon and 16.00 h levels. Likewise, the mean T3 level at midnight was not significantly different from the 20.00 h and 04.00 h levels, resulting in a plateau from 08.00 h to 16.00 h and a trough from 20.00 h to 04.00 h. The mean (± sd) T4 concentration peaked around 16.00 h at a level (2.43 ± .81 μg/dl) significantly (P<.01) higher than the lowest concentration (1.79 ± .63 μg/dl) around 04.00 h.
Summary. The interaction between oestrogen and progesterone in the regulation of the uterine oxytocin receptor in sheep was evaluated by measuring the binding of oxytocin to membrane preparations of caruncular and intercaruncular endometrium and myometrium. Ovariectomized ewes were assigned in groups of five to each cell of a 4 \m=x\2 factorial design. The four treatments were (a) vehicle (maize oil) for 12 days, (b) progesterone (10 mg day\m=-\1) for 9 days, (c) progesterone for 9 days followed by maize oil until day 12 and (d) progesterone for 12 days. The two oestradiol treatments consisted of the administration of implants in the presence or absence of oestradiol. The ewes were killed on day 10 (group b) or day 13 (groups a, c and d) for collection of uterine tissues. The response of the caruncular and intercaruncular endometrium to the treatments was similar. In the absence of oestradiol, treatment with progesterone continuously for either 9 or 12 days reduced the concentration of the oxytocin receptor in comparison with both the control and the progesterone withdrawal group (in which values were similar). The presence of oestradiol reduced the receptor concentrations in control and both 9-and 12-day continuous progesterone treatment groups, but enhanced the concentration in the progesterone withdrawal group. The myometrial oxytocin receptors responded in a similar way to those in the endometrium to progesterone treatment alone, but the addition of oestradiol produced no further effect. In conclusion, progesterone and oestradiol caused downregulation of the endometrial oxytocin receptor. On the other hand, progesterone withdrawal, similar to that which occurs during luteolysis, increased receptor density in the presence of oestradiol. Progesterone may influence the response of the myometrium to oxytocin by causing a reduction in receptor density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.