Cancer development and chemo-resistance are often due to impaired functioning of the p53 tumor suppressor through genetic mutation or sequestration by other proteins. In glioblastoma multiforme (GBM), p53 availability is frequently reduced because it binds to the Murine Double Minute-2 (MDM2) oncoprotein, which accumulates at high concentrations in tumor cells. The use of MDM2 inhibitors that interfere with the binding of p53 and MDM2 has become a valid approach to inhibit cell growth in a number of cancers; however little is known about the efficacy of these inhibitors in GBM. We report that a new small-molecule inhibitor of MDM2 with a spirooxoindolepyrrolidine core structure, named ISA27, effectively reactivated p53 function and inhibited human GBM cell growth in vitro by inducing cell cycle arrest and apoptosis. In immunoincompetent BALB/c nude mice bearing a human GBM xenograft, the administration of ISA27 in vivo activated p53, inhibited cell proliferation and induced apoptosis in tumor tissue. Significantly, ISA27 was non-toxic in an in vitro normal human cell model and an in vivo mouse model. ISA27 administration in combination with temozolomide (TMZ) produced a synergistic inhibitory effect on GBM cell viability in vitro, suggesting the possibility of lowering the dose of TMZ used in the treatment of GBM. In conclusion, our data show that ISA27 releases the powerful antitumor capacities of p53 in GBM cells. The use of this MDM2 inhibitor could become a novel therapy for the treatment of GBM patients.
The de novo production of steroids and neurosteroids begins in mitochondria by the conversion of cholesterol to pregnenolone through cytochrome P450 side-chain cleavage (CYP11A1) enzymatic activity. The C-terminal amino acid domain of the translocator protein (TSPO) has been demonstrated to bind cholesterol, thereby determining its mitochondrial translocation. The goal of the present study was to investigate the effect of the Ala147Thr single-nucleotide polymorphism localized in this TSPO region on pregnenolone production in healthy volunteers. Pregnenolone production was evaluated in a peripheral cell model, represented by circulating lymphomonocytes. First, CYP11A1 expression, both at mRNA and protein level, was demonstrated. Pregnenolone production varied among genotype groups. Comparison of pregnenolone mean values revealed that Thr147 homozygous or heterozygous individuals had significantly lower pregnenolone levels compared with Ala147 homozygous individuals. These findings suggested a dominant effect of the minor allelic variant Thr147 to produce this first metabolite of the steroidogenesis pathway. Interestingly, Ala147 homozygous individuals exhibited significant higher levels of circulating cholesterol-rich low-density lipoproteins with respect to heterozygous individuals. In conclusion, our results demonstrate that the Ala147Thr spontaneous amino acid substitution within TSPO is able to affect pregnenolone production; this should encourage further studies to investigate its potential role in polygenic dyslipidemias.
G protein-coupled receptor (GPR) 17 is a P2Y-like receptor that responds to both uracil nucleotides (as UDP-glucose) and cysteinyl-leukotrienes (cysLTs, as LTD 4 ). By bioinformatic analysis, two distinct binding sites have been hypothesized to be present on GPR17, but little is known on their putative cross-regulation and on GPR17 desensitization/resensitization upon agonist exposure. In this study, we investigated in GPR17-expressing 1321N1 cells the cross-regulation between purinergic-and cysLT-mediated responses and analyzed GPR17 regulation after prolonged agonist exposure. Because GPR17 receptors couple to G i proteins and adenylyl cyclase inhibition, both guanosine 5Ј-O-(3-[35 S]thio)triphosphate ([ 35 S]GTP␥S) binding and the cAMP assay have been used to investigate receptor functional activity. UDP-glucose was found to enhance LTD 4 potency in mediating activation of G proteins and vice versa, possibly through an allosteric mechanism. Both UDP-glucose and LTD 4 induced a time-and concentration-dependent GPR17 loss of response (homologous desensitization) with similar kinetics. GPR17 homologous desensitization was accompanied by internalization of receptors inside cells, which occurred in a time-dependent manner with similar kinetics for both agonists. Upon agonist removal, receptor resensitization occurred with the typical kinetics of G protein-coupled receptors. Finally, activation of GPR17 by UDP-glucose (but not vice versa) induced a partial heterologous desensitization of LTD 4 -mediated responses, suggesting that nucleotides have a hierarchy in producing desensitizing signals. These findings suggest a functional cross-talk between purinergic and cysLT ligands at GPR17. Because of the recently suggested key role of GPR17 in brain oligodendrogliogenesis and myelination, this cross-talk may have profound implications in fine-tuning cell responses to demyelinating and inflammatory conditions when these ligands accumulate at lesion sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.