Dimethyl dicarbonate (DMDC) was added to grape must and to synthetic media and results showed that, at 20 degrees C, 150 mg.L(-)(1) DMDC completely inhibited the fermentation of a grape must that was previously inoculated with 10(6) cells.mL(-)(1) Saccharomyces bayanus and Saccharomyces uvarum. Brettanomyces intermedius, Candida guilliermondii, Hansenula jadinii, Hansenula petersonii, Kloeckera apiculata, Pichia membranaefaciens, and Saccharomyces cerevisiae were inhibited by 250 mg.L(-)(1). Candida valida was inhibited in the presence of 350 mg.L(-)(1), whereas Hanseniaspora osmophila, Saccharomycodes ludwigii, Schizosaccharomyces pombe, and Zygosaccharomyces bailii required 400 mg.L(-)(1). Delay of fermentation (but not inhibition) was noted in the presence of 400 mg.L(-)(1) for the following cultures: Brettanomyces anomalus, Hanseniaspora uvarum, Metschnikowia pulcherrima, Schizosaccharomyces japonicus, Torulaspora delbrueckii, and Zygosaccharomyces florentinus. Acetobacter aceti and Lactobacillus sp. were completely inhibited using 1000 and 500 mg.L(-)(1) DMDC, respectively. The fermentation of a grape must inoculated with 10(6) cells.mL(-)(1) of different wine yeasts was delayed for 4 days after the prior addition of 200 mg.L(-)(1) of DMDC; 200 mg.L(-)(1) DMDC did not show any residual inhibitory effect after 12 h, nor did 300 mg.L(-)(1) 24 h after the addition. In cellar experiments, indigenously contaminated grape musts (with and without skins) showed a delay in fermentation of 48 h after the addition of only 50 mg.L(-)(1) DMDC. The possibility of using DMDC (as pure grade as commercially available) in grape must as a disinfectant for the decontamination of musts indigenously contaminated with wild yeast should be considered seriously, despite its apparent low solubility in water.
Experiments were designed to demonstrate the actual contribution of yeast in the formation of the primary aroma during the vinification of neutral grapes. Ruché was chosen as the model wine to study because of its unique fragrance. A yeast strain specific for Ruché was selected using a new and rapid isolation method for red wines. The results of this study can be summarized as follows: Skins from nonaromatic white or red grapes apparently contain most of the primary aroma compounds that are revealed in the must only after contact with yeast cells under defined conditions. Similar results were obtained with the pulp and seeds fractions; however, the olfactory notes, although well characterized, differed from those obtained with skins alone. Clarification, filtration, and centrifugation of the pulp and seed fractions or sonification of the skins produce different and well-characterized olfaction notes during the contact with yeast. The primary aroma of nonaromatic white and red grapes contained in the skins can be revealed within 24-48 h of yeast contact in a synthetic nutrient medium (SNM). The primary aroma precursors extracted from the skins with methanol, water-saturated butanol, or aqueous buffer at pH 3.2, concentrated and eluted from a C18 resin column, can be transformed to the free form wine aroma markers within 6 h of contact with yeast cells in SNM. By contrast, prolonged maceration of the skins in aqueous alcoholic buffer at pH 3.2 or 1.1, at 50 or 70 degrees C did not release primary odors typical of wine. The individual primary aroma compounds, identified by GC-MS analysis in Ruché wine samples or in Ruché skin-yeast-SNM samples, could not explain the complexity of the typical Ruché wine odor. Only odors common to many wine varieties were identified by GC-olfactometry analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.