This paper presents an innovated method for the discrimination of groundwater samples in common groups representing the hydrogeological units from where they have been pumped. This method proved very efficient even in areas with complex hydrogeological regimes. The proposed method requires chemical analyses of water samples only for major ions, meaning that it is applicable to most of cases worldwide. Another benefit of the method is that it gives a further insight of the aquifer hydrogeochemistry as it provides the ions that are responsible for the discrimination of the group. The procedure begins with cluster analysis of the dataset in order to classify the samples in the corresponding hydrogeological unit. The feasibility of the method is proven from the fact that the samples of volcanic origin were separated into two different clusters, namely the lava units and the pyroclastic-ignimbritic aquifer. The second step is the discriminant analysis of the data which provides the functions that distinguish the groups from each other and the most significant variables that define the hydrochemical composition of the aquifer. The whole procedure was highly successful as the 94.7 % of the samples were classified to the correct aquifer system. Finally, the resulted functions can be safely used to categorize samples of either unknown or doubtful origin improving thus the quality and the size of existing hydrochemical databases.
Limnos Island in Greece, which has been the subject of extensive hydrogeological research, contains confined volcanic aquifers that overlie impermeable flysch. Groundwater salinization is usually the effect of seawater intrusion, and results from a combination of factors such as low annual areal precipitation and exploitation of aquifers for civil, commercial, and agricultural purposes. Areas with intense agricultural activities have also increasingly observed these effects. A geochemical evaluation on the basis of multiple ion (Ca2+, Mg2+, Na+, K+, HCO3-, Cl-, SO4(2-), NO3-) concentrations and physicochemical parameters distribution revealed that ion exchange is the dominant hydrogeochemical process. However, the enrichment of groundwater in potassium and magnesium results from rock and mineral weathering and dissolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.